Biochemistry is a fundamental core course in disciplines such as agriculture,forestry,medicine,animal husbandry,veterinary medicine,and food science.By prioritizing"educating people"in the teaching process o...Biochemistry is a fundamental core course in disciplines such as agriculture,forestry,medicine,animal husbandry,veterinary medicine,and food science.By prioritizing"educating people"in the teaching process of this professional course,we can unearth diverse ideological and political elements related to agricultural production practices within the curriculum knowledge system and the forefront of discipline development.Exploring various teaching methods and utilizing diverse teaching tools are effective strategies to achieve ideological and political education that silently influences students in the field of biochemistry.The goal is to nurture students strong ideals and beliefs,fostering a deep connection to the sentiments of"agriculture,rural areas and farmers in a great nation."This approach aims to instill a sense of responsibility towards strengthening agriculture,shaping students into individuals from South China Agricultural University who possess lofty aspirations and the courage to shoulder responsibility in the new era.展开更多
In 2001, the International Seabed Authority (ISBA) initiated the consideration relating to the Regulations for Prospecting and Exploration for Hydrothermal Polymetallic Sulphides and Cobalt-rich Ferromanganese Crust...In 2001, the International Seabed Authority (ISBA) initiated the consideration relating to the Regulations for Prospecting and Exploration for Hydrothermal Polymetallic Sulphides and Cobalt-rich Ferromanganese Crusts in the Area at its 7th session. Since then, the consideration of the Regulations has been mainly focused on the size of areas to be allocated for exploration and exploitation of the crusts. This paper, based on the investigation data and the analysis of the distribution characteristics of the crusts, suggests a model for determining the size of areas for exploration and exploitation of the crusts, taking into account various factors such as production scale, crust thickness and grade, mineable area proportion, recovery efficiency, exploration venture, and so on. Through the modeling, the paper suggests that the exploration area (the area covered by each application for approval of a plan of work for exploration of cobalt-rich crusts) shall be 4 856 km2 and the exploitation area (the mine site area) shall be 1 214 km2, for 20 years of 1 million wet tonnes annual production.展开更多
There are large deltaic systems in the Triassic Yanchang Formation in the northern Shaanxi area of the Ordos Basin, and developed two sets of good source-reservoir-caprock assemblages and many sets of oil-bearing beds...There are large deltaic systems in the Triassic Yanchang Formation in the northern Shaanxi area of the Ordos Basin, and developed two sets of good source-reservoir-caprock assemblages and many sets of oil-bearing beds. Exploration experience demonstrates that the formation and distribution of the reservoir were controlled by the generative depression of the Yanchang Formation, and deltaic reservoir sand body is the material basis for large-scale oilfields. In addition, secondary laumontite in a low permeable area was dissolved and then a high permeable area was formed. The updip lithologic variety of reservoir sand bodies is favorable to the formation of subtle lithologic traps, and the deltaic reservoirs are characterized by large multi-beds of oil-generation and abundant hydrocarbon resources. In this paper, the petroleum geologic settings of the studied area are analyzed, and the accumulation characteristics and exploration methods of lithologic reservoirs are summarized. It is of theoretical significance for the study of the exploration theories of lithologic reservoirs, and also expedites the exploration steps of deltaic reservoirs in the northern Shaanxi area.展开更多
Based on exploration and development results and evaluation of marine shale gas in South China in the past ten years, in view of the features of "high maturity, strong tectonic reformation and high shear stress&q...Based on exploration and development results and evaluation of marine shale gas in South China in the past ten years, in view of the features of "high maturity, strong tectonic reformation and high shear stress" of the shale in Zhaotong exploration zone in the Yunnan and Guizhou Plateau, as well as the key issues of long time diffusion and leakage of shallow shale gas, and the preservation conditions, the factors controlling shallow shale gas sweet spot and key zone selection evaluation technology of shale gas are investigated. From 2017 to 2018, the first significant exploration breakthrough was made in the Taiyang anticline at a buried depth of 700 to 2 000 m, discovering large-scale proved geological reserves of shallow shale gas. By examining the accumulation conditions and sweet spot control factors of the shallow shale gas in this area, it is found that the accumulation and productivity potential of shale gas in the mountainous area with complex structure outside basin are controlled by five factors:(1) The gas-rich area has weak tectonic reformation and good preservation conditions on the whole, taking on typical anticline trap occurrence mode.(2) The gas-rich area is in over-pressure state and high in shale gas content.(3) The gas-rich area has high quality shale and thus superior source rock condition.(4) The gas-rich area has high quality reservoirs dominated by class I.(5) The shale gas reservoir in the gas-rich area has high content of brittle minerals and small difference between maximum and minimum horizontal stresses which are conducive to hydraulic fracturing. The innovative practice and core technologies formed during the exploration and production capacity construction of shallow shale gas in the Zhaotong demonstration zone have great reference significance for shallow shale gas exploration and development in other areas.展开更多
Based on field outcrop investigation,interpretation and analysis of drilling and seismic data,and consulting on a large number of previous research results,the characteristics of ancient marine hydrocarbon source rock...Based on field outcrop investigation,interpretation and analysis of drilling and seismic data,and consulting on a large number of previous research results,the characteristics of ancient marine hydrocarbon source rocks,favorable reservoir facies belts,hydrocarbon migration direction and reservoir-forming law in the Ordos Basin have been studied from the viewpoints of North China Craton breakup and Qilian-Qinling oceanic basin opening and closing.Four main results are obtained:(1)Controlled by deep-water shelf-rift,there are three suites of source rocks in the Ordos Basin and its periphery:Mesoproterozoic,Lower Cambrian and Middle-Upper Ordovician.(2)Controlled by littoral environment,paleo-uplift and platform margin,four types of reservoirs are developed in the area:Mesoproterozoic-Lower Cambrian littoral shallow sea quartz sandstone,Middle-Upper Cambrian–Ordovician weathering crust and dolomitized reservoir,and Ordovician L-shape platform margin reef and beach bodies.(3)Reservoir-forming assemblages vary greatly in the study area,with"upper generation and lower storage"as the main pattern in the platform,followed by"self-generation and self-storage".There are both"upper generation and lower storage"and"self-generation and self-storage"in the platform margin zone.In addition,in the case of communication between deep-large faults and the Changchengian system paleo-rift trough,there may also exist a"lower generation and upper reservoir"combination between the platform and the margin.(4)There are four new exploration fields including Qingyang paleo-uplift pre-Carboniferous weathering crust,L-shape platform margin zone in southwestern margin of the basin,Ordovician subsalt assemblage in central and eastern parts of the basin,and Mesoproterozoic–Cambrian.Among them,pre-Carboniferous weathering crust and L-shape platform margin facies zone are more realistic replacement areas,and Ordovician subsalt assemblage and the Proterozoic-Cambrian have certain potential and are worth exploring.展开更多
The global trends in deepwater oil and gas exploration,characteristics of deepwater oil and gas discovery,and layout of deepwater oil and gas exploration business by seven major international oil companies are systema...The global trends in deepwater oil and gas exploration,characteristics of deepwater oil and gas discovery,and layout of deepwater oil and gas exploration business by seven major international oil companies are systematically analyzed using commercial databases(e.g.S&P Global and Rystad)and public information of oil companies.The deepwater area is currently the most important domain for global oil and gas exploration and discovery,with the most discoveries and reserves in passive continental margin basins.The deepwater discoveries have the greatest contribution to the total newly discovered oil and gas reserves in the sea areas,with an increasing number of lithological reservoirs discovered,and oil and gas discoveries mainly distributed in the Mesozoic–Cenozoic.The seven major international oil companies are widely active in various aspects of deepwater oil and gas exploration and development,and play a leading role.Based on years of theoretical understanding of global oil and gas geology and resource evaluation,it is proposed that favorable deepwater exploration areas in the future will mainly focus on three major areas:the Atlantic coast,the Indian Ocean periphery,and the Arctic Ocean periphery.Six suggestions are put forward for expanding overseas deepwater oil and gas exploration business:first,expand the sources for obtaining multi-user seismic data and improve the scientific selection of deepwater exploration areas;second,increase efforts to obtain deepwater exploration projects in key areas;third,adopt various methods to access into/exit from resource licenses flexibly;fourth,acquire licenses with large equity and operate in“dual-exploration”model;fifth,strengthen cooperation with leading international oil companies in deepwater technology;and sixth,improve business operation capabilities and gradually transform from“non-operators”to“operators”.展开更多
The working area is located in the industrially developed region of Rongshengpu-Qianjin, where a surface water system is developed, surface-layer lithology is complicated, and various kinds of hydrocarbon traps are bu...The working area is located in the industrially developed region of Rongshengpu-Qianjin, where a surface water system is developed, surface-layer lithology is complicated, and various kinds of hydrocarbon traps are buried at depth. The seismic data acquired previously couldn't be interpreted due to the complex surface and geological conditions. Taking secondary 3D seismic from the Rongshengpu-Qianjin area as an example, this paper describes a set of techniques designed to overcome these difficulties and improve the quality of seismic data. The applied techniques included flexible acquisition geometry, low-noise receiver conditions, quantitative quality control, and so on.展开更多
Lower Paleozoic carbonate rocks are an important exploration area in craton area of the Tarim Basin,with the proven oil and gas reserves of more than 2.2×10^8 t,but no large-scale discovery has been made in the G...Lower Paleozoic carbonate rocks are an important exploration area in craton area of the Tarim Basin,with the proven oil and gas reserves of more than 2.2×10^8 t,but no large-scale discovery has been made in the Gucheng area so far.The key issues restricting exploration are that the source rock,reservoir scale and law of oil and gas enrichment are unclear.By systematically examining the petroleum geological conditions of Lower Paleozoic carbonate rocks,the following findings are reached:(1)Source rocks of slope-basin facies developed in Cambrian-Lower Ordovician in the Gucheng area.(2)The dolomitized beach in the lower part of Ordovician Yingshan Formation has large-scale reservoirs,good reservoir-cap assemblage and developed gas source faults,and is an important field for increasing reserves and production in the near future;hydrocarbon enrichment is controlled by reservoir and gas source faults,and the central dolomitized beach zone is the main exploration area.(3)The Cambrian platform margin reef beach,large in scale,good in physical properties and close to source rocks,has the possibility to form monolithic gas field;the caprock and preservation conditions are the key factors for hydrocarbon enrichment;the northern part of the phasesⅠandⅡplatform margin reefs has better sealing conditions,and is the main direction of next exploration.(4)Limestone fault solution reservoirs in the upper part of Ordovician Yingshan Formation,controlled by faults and small in scale,but good in reservoir-cap combination,worth exploring.(5)The granular limestone beach of Ordovician Yijianfang Formation is well developed and gas-bearing,but short in exposure dissolution time,and the reservoirs are strongly heterogeneous,and are a potential exploration field.展开更多
Laiyang formation of Jiaolai Basin is the target stratum for oil and gas exploration. By measuring several field sections, the authors find that Laiyang formation reveals the whole processes from development to death ...Laiyang formation of Jiaolai Basin is the target stratum for oil and gas exploration. By measuring several field sections, the authors find that Laiyang formation reveals the whole processes from development to death of the lake basin and its sedimentary facies differ in different structural locations. Analyses about sedimentary facies and paleocurrent orientations in association with researches about the positive tectonic units such as Dayetou horseback and Chaigou horst indicate that Laiyang sag is a relatively independent sedimentary unit that shows great water depth typical of deep lake or semideep lake and was controlled by Wulongcun fault during the deposition period of Laiyang formation. Its sediments mainly originated from Jiaobei uplift area and Dayetou horseback. Gaomi-Zhucheng sag was a fast-filled basin controlled by Wurong fault and Yishu fault zone, being high in the northeast and low in the northwest and characterized by the development of pluvial facies and fluvial facies in most areas, and with the development of lake facies being limited to local low-lying regions. Selection of advantageous hydrocarbon reservoir areas for exploration purpose mainly relies on the sedimentation pattern of prototype basin and conservation conditions. The central-west area of Laiyang sag covered by overlying Laiyang formation is the most advantageous exploration area.展开更多
Dark mudstones and shales of the Carboniferous Jiusi Formation are widely developed in northern Guizhou and Yunnan provinces, SW China. However, the distribution, reservoir characterization, and exploration potential ...Dark mudstones and shales of the Carboniferous Jiusi Formation are widely developed in northern Guizhou and Yunnan provinces, SW China. However, the distribution, reservoir characterization, and exploration potential of organic-rich shales in this area are yet to be quantified, thus limiting the prospect of shale gas in this area. This study investigates the basic geological conditions of Jiusi shale gas, using core data, well-logs, and some other test data, obtaining the following results. The organic-rich shales are mainly composed of deltaic-to-shallow-shelf deposits, with thickness ranging from 0 to 450 m, and above 350 m around the subsidence center. The organic matter is mainly type Ⅱ kerogen with TOC content of mostly 1%–2%, indicating a moderate maturity. The argillaceous shale reservoirs are indicative of strong heterogeneity, high clay minerals content, low porosity, low permeability, high specific surface area, and relatively developed secondary porosity. The gas-log anomaly intervals obtained from the survey wells have a cumulative thickness that is apparently greater than 200 m, and a few shale intervals showing high desorbed and adsorbed gas contents. Due to complex structures in the study area, conditions responsible for shale gas occurrence and trapping are generally moderate. However, areas having wide and gentle folds with moderate depth of burial reveals relatively favorable conditions of hydrocarbon traps. In contrast with typical marine-continental transitional shales, the Jiusi shale have better geological conditions for shale gas preservation. The analysis of the geological framework and hydrocarbon potential of Carboniferous Jiusi Formation provide more insight for the exploration of Carboniferous shale gas in southern China.展开更多
3D geological modeling is an inevitable choice for coal exploration to adapt to the transformation of coal mining for green, fine, transparent and Intelligent mining. In the traditional Coalfield exploration geologica...3D geological modeling is an inevitable choice for coal exploration to adapt to the transformation of coal mining for green, fine, transparent and Intelligent mining. In the traditional Coalfield exploration geological reports, the spatial expression form for the coal seams and their surrounding rocks are 2D maps. These 2D maps are excellent data sources for constructing 3D geological models of coal field exploration areas. How to construct 3D models from these 2D maps has been studying in coal exploration industry for a long time, and still no breakthrough has been achieved so far. This paper discusses the principle, method and software design idea of constructing 3D geological model of an exploration area with 2D maps made by AutoCAD/MapGIS. At first, the paper analyzes 3D geological surface expression mode in 3D geological modeling software. It is pointed out that although contour method has unique advantages in coal field exploration, TIN (Triangular Irregular Network) is still the standard configuration of 3D modeling software for coal field. Then, the paper discusses the method of 2D line features obtaining elevation and upgrading 2D curve to 3D curve. Next, the method of semi-automatic partition is introduced to build the boundary ring of the surface patch, that is, the user clicks and selects the line feature to build the outer boundary ring of the surface patch. Then, Auto-process method for fault line inside of the outer boundary ring is discussed, it including construction of fault ring, determining fault ring being normal fault ring or reverse fault ring and an algorithm of dealing with normal fault ring. An algorithm of dealing with reverse fault ring is discussed detailly, the method of expanding reverse fault ring and dividing the duplicate area in reverse fault into two portions is introduced. The paper also discusses the method of extraction ridge line/valley line, the construction of fault plane, the construction of stratum and coal body. The above ideas and methods have been initially implemented in the “3D modeling platform for coal field exploration” software, and applied to the 3D modeling practice of data from several coal field exploration areas in Ningxia, Shanxi, Qinghai, etc.展开更多
The deepwater area of southern Qiongdongnan Basin is a hydrocarbon exploration frontier and mainly located on the continental slope in the northwestern South China Sea.Its tectonic and depositional evolution is simila...The deepwater area of southern Qiongdongnan Basin is a hydrocarbon exploration frontier and mainly located on the continental slope in the northwestern South China Sea.Its tectonic and depositional evolution is similar to the typical marginal deepwater areas abroad where oils have been discovered.Favorable hydrocarbon conditions in this area are as follows:(1) three sets of source rocks (including lacustrine mudstone of Eocene,coastal plain coal-bearing strata and semi-closed shallow sea mudstone of Oligocene,and marine mudstone展开更多
To fully exploit the technical advantages of the large-depth and high-precision artificial source electromagnetic method in the complex structure area of southern Sichuan and compensate for the shortcomings of the con...To fully exploit the technical advantages of the large-depth and high-precision artificial source electromagnetic method in the complex structure area of southern Sichuan and compensate for the shortcomings of the conventional electromagnetic method in exploration depth,precision,and accuracy,the large-depth and high-precision wide field electromagnetic method is applied to the complex structure test area of the Luochang syncline and Yuhe nose anticline in the southern Sichuan.The advantages of the wide field electromagnetic method in detecting deep,low-resistivity thin layers are demonstrated.First,on the basis of the analysis of physical property data,a geological–geoelectric model is established in the test area,and the wide field electromagnetic method is numerically simulated to analyze and evaluate the response characteristics of deep thin shale gas layers on wide field electromagnetic curves.Second,a wide field electromagnetic test is conducted in the complex structure area of southern Sichuan.After data processing and inversion imaging,apparent resistivity logging data are used for calibration to develop an apparent resistivity interpretation model suitable for the test area.On the basis of the results,the characteristics of the electrical structure change in the shallow longitudinal formation of 6 km are implemented,and the transverse electrical distribution characteristics of the deep shale gas layer are delineated.In the prediction area near the well,the subsequent data verification shows that the apparent resistivity obtained using the inversion of the wide field electromagnetic method is consistent with the trend of apparent resistivity revealed by logging,which proves that this method can effectively identify the weak response characteristics of deep shale gas formations in complex structural areas.This experiment,it is shown shows that the wide field electromagnetic method with a large depth and high precision can effectively characterize the electrical characteristics of deep,low-resistivity thin layers in complex structural areas,and a new set of low-cost evaluation technologies for shale gas target layers based on the wide field electromagnetic method is explored.展开更多
In Mesozoic-Cenozoic faulted basin in the periphery of Daqing exploration area, the clastic reservoirs mainly consist of siltstone and gravel-bearing sandstone. The electrical conductivity of the reservoirs is complic...In Mesozoic-Cenozoic faulted basin in the periphery of Daqing exploration area, the clastic reservoirs mainly consist of siltstone and gravel-bearing sandstone. The electrical conductivity of the reservoirs is complicated due to the complex pore structures, which cannot be accurately interpreted with commonly used model. In order to solve the problem, a three-water model has been applied in this study based on in-depth analysis of the conductive mechanism of rocks in the explored area, and favorable application results are achieved.展开更多
To realize high-efficiency and sustainable exploration of the Jiyang depression at the stage of high exploration degree, a hydrocarbon accumulation-geological evaluation method is developed on the basis of current geo...To realize high-efficiency and sustainable exploration of the Jiyang depression at the stage of high exploration degree, a hydrocarbon accumulation-geological evaluation method is developed on the basis of current geologic knowledge and extent of fine exploration. The concept of "layer exploration unit" is proposed in the study, and it is defined as an exploration geological unit that has a relatively complete and unified tectonic system, sedimentary system and hydrocarbon migration & accumulation system in a tectonic layer or tectonic sublayer within a fault basin. Then, an approach to dividing and evaluating the "layer exploration unit" is developed. With this approach, the Jiyang depression is divided into 305 layer exploration units, thus helping realize precise and stereoscopic geological understanding and exploration deployment. Fine splitting of remaining resources and benefit evaluation of exploration targets are conducted by "layer exploration units". As a result, 66 efficient "layer exploration units" in four major areas(i.e. Paleogene upper Es4-Dongying Formation, Neogene Minghuazhen Formation-Guantao Formation, Paleozoic buried-hill, and Paleogene Kongdian Formation-lower Es4) are determined as the targets for obtaining more reserves and breakthroughs in the short and medium term.展开更多
The geothermal resources in Fujian Province are mainly hydrothermal resources of medium-low temperature.To better understand the whole process and conditions of heat control in the middle and deep crust,this study foc...The geothermal resources in Fujian Province are mainly hydrothermal resources of medium-low temperature.To better understand the whole process and conditions of heat control in the middle and deep crust,this study focuses on the analysis of heat accumulation model in Hongtang Area of Xiamen,and the main conditions of the model such as faults and sags are explored and interpreted in detail by using gravity and wide-field electromagnetic methods.4 main faults(F33,F2,F12 and HT-F1)and 10 secondary faults(HT-F2,HT-F3,HT-F4,HT-F5,HT-F6,HT-F7,HT-F8,HT-F9,HT-F10 and HT-F11)were inferred,and the distribution range of sags was delineated.The convective geothermal system is composed of four components:Heat source,geothermal reservoir,heat-conductive fault and heat retaining cover,which form a quaternary heat accumulation model.According to the model,the intersection of the main faults F12,HTF1 and F33 can be delineated as the primary target area of geothermal exploration,while the intersection of the secondary faults(F12 and HT-F6;F12 and HT-F2;HT-F9,HT-F10 and F12;F12 and HT-F11;F33 and HT-F3;HT-F8 and HT-F3;HT-F2,HT-F10 and HT-F1)can be delineated as the secondary target area.Borehole DR01,which is located in the primary target area,shows that the water temperature increases from fast to slow in the depth range of 0–500 m,and stays at 36℃below 500 m.The reliability of the heat accumulation model and the target area was tested via geothermal boreholes,which is of great significance to the exploitation and utilization of geothermal resources in Hongtang Area of Xiamen.展开更多
1 Introduction The huize Zn-Pb ore district in Yunnan province is locatedinthecentralsouthernofthe Sichuan—Yunnan—GuizhouPb-ZnPoly-metallic Mineralization Area in the southwestern margin of the Yangtze Block,and is ...1 Introduction The huize Zn-Pb ore district in Yunnan province is locatedinthecentralsouthernofthe Sichuan—Yunnan—GuizhouPb-ZnPoly-metallic Mineralization Area in the southwestern margin of the Yangtze Block,and is strictly controlled by fault structures.It has developed to one of the famous production bases of lead&zinc and germanium in China.展开更多
The Baguamiao superlarge gold deposit in Shaanxi Province is one of the typical cases in China that are hosted by sedimentary rocks. Explorers and researchers have discussed the gold mineralization enrichment conditio...The Baguamiao superlarge gold deposit in Shaanxi Province is one of the typical cases in China that are hosted by sedimentary rocks. Explorers and researchers have discussed the gold mineralization enrichment conditions by studying sulphur, oxygen, carbon, silicon stable isotopes and mineralizing fluid features of the Baguamiao gold deposit and proposed a hydrothermal sedimentation-magmatic reconstructing gold mineralization model featuring multi-sources of ore-forming materials and multistage mineralizations. In addition, prospecting for “Baguamiao-type” gold deposits was started in the Fengtai Basin and a great number of important prospecting targets such as Tonglinggou, Simaoling, Guoansi and Dachaigou were discovered.展开更多
基金Supported by Guangdong Provincial Teaching Quality and Teaching Reform Project in 2021.
文摘Biochemistry is a fundamental core course in disciplines such as agriculture,forestry,medicine,animal husbandry,veterinary medicine,and food science.By prioritizing"educating people"in the teaching process of this professional course,we can unearth diverse ideological and political elements related to agricultural production practices within the curriculum knowledge system and the forefront of discipline development.Exploring various teaching methods and utilizing diverse teaching tools are effective strategies to achieve ideological and political education that silently influences students in the field of biochemistry.The goal is to nurture students strong ideals and beliefs,fostering a deep connection to the sentiments of"agriculture,rural areas and farmers in a great nation."This approach aims to instill a sense of responsibility towards strengthening agriculture,shaping students into individuals from South China Agricultural University who possess lofty aspirations and the courage to shoulder responsibility in the new era.
基金China International Seabed Area R & D Program under contract No.DYXM-115-01-1
文摘In 2001, the International Seabed Authority (ISBA) initiated the consideration relating to the Regulations for Prospecting and Exploration for Hydrothermal Polymetallic Sulphides and Cobalt-rich Ferromanganese Crusts in the Area at its 7th session. Since then, the consideration of the Regulations has been mainly focused on the size of areas to be allocated for exploration and exploitation of the crusts. This paper, based on the investigation data and the analysis of the distribution characteristics of the crusts, suggests a model for determining the size of areas for exploration and exploitation of the crusts, taking into account various factors such as production scale, crust thickness and grade, mineable area proportion, recovery efficiency, exploration venture, and so on. Through the modeling, the paper suggests that the exploration area (the area covered by each application for approval of a plan of work for exploration of cobalt-rich crusts) shall be 4 856 km2 and the exploitation area (the mine site area) shall be 1 214 km2, for 20 years of 1 million wet tonnes annual production.
文摘There are large deltaic systems in the Triassic Yanchang Formation in the northern Shaanxi area of the Ordos Basin, and developed two sets of good source-reservoir-caprock assemblages and many sets of oil-bearing beds. Exploration experience demonstrates that the formation and distribution of the reservoir were controlled by the generative depression of the Yanchang Formation, and deltaic reservoir sand body is the material basis for large-scale oilfields. In addition, secondary laumontite in a low permeable area was dissolved and then a high permeable area was formed. The updip lithologic variety of reservoir sand bodies is favorable to the formation of subtle lithologic traps, and the deltaic reservoirs are characterized by large multi-beds of oil-generation and abundant hydrocarbon resources. In this paper, the petroleum geologic settings of the studied area are analyzed, and the accumulation characteristics and exploration methods of lithologic reservoirs are summarized. It is of theoretical significance for the study of the exploration theories of lithologic reservoirs, and also expedites the exploration steps of deltaic reservoirs in the northern Shaanxi area.
基金Supported by the China National Science and Technology Major Project(2017ZX05063).
文摘Based on exploration and development results and evaluation of marine shale gas in South China in the past ten years, in view of the features of "high maturity, strong tectonic reformation and high shear stress" of the shale in Zhaotong exploration zone in the Yunnan and Guizhou Plateau, as well as the key issues of long time diffusion and leakage of shallow shale gas, and the preservation conditions, the factors controlling shallow shale gas sweet spot and key zone selection evaluation technology of shale gas are investigated. From 2017 to 2018, the first significant exploration breakthrough was made in the Taiyang anticline at a buried depth of 700 to 2 000 m, discovering large-scale proved geological reserves of shallow shale gas. By examining the accumulation conditions and sweet spot control factors of the shallow shale gas in this area, it is found that the accumulation and productivity potential of shale gas in the mountainous area with complex structure outside basin are controlled by five factors:(1) The gas-rich area has weak tectonic reformation and good preservation conditions on the whole, taking on typical anticline trap occurrence mode.(2) The gas-rich area is in over-pressure state and high in shale gas content.(3) The gas-rich area has high quality shale and thus superior source rock condition.(4) The gas-rich area has high quality reservoirs dominated by class I.(5) The shale gas reservoir in the gas-rich area has high content of brittle minerals and small difference between maximum and minimum horizontal stresses which are conducive to hydraulic fracturing. The innovative practice and core technologies formed during the exploration and production capacity construction of shallow shale gas in the Zhaotong demonstration zone have great reference significance for shallow shale gas exploration and development in other areas.
基金Supported by the PetroChina Special S&T Project(2016E-0502)National Natural Science Foundation of China(41772099,41872116).
文摘Based on field outcrop investigation,interpretation and analysis of drilling and seismic data,and consulting on a large number of previous research results,the characteristics of ancient marine hydrocarbon source rocks,favorable reservoir facies belts,hydrocarbon migration direction and reservoir-forming law in the Ordos Basin have been studied from the viewpoints of North China Craton breakup and Qilian-Qinling oceanic basin opening and closing.Four main results are obtained:(1)Controlled by deep-water shelf-rift,there are three suites of source rocks in the Ordos Basin and its periphery:Mesoproterozoic,Lower Cambrian and Middle-Upper Ordovician.(2)Controlled by littoral environment,paleo-uplift and platform margin,four types of reservoirs are developed in the area:Mesoproterozoic-Lower Cambrian littoral shallow sea quartz sandstone,Middle-Upper Cambrian–Ordovician weathering crust and dolomitized reservoir,and Ordovician L-shape platform margin reef and beach bodies.(3)Reservoir-forming assemblages vary greatly in the study area,with"upper generation and lower storage"as the main pattern in the platform,followed by"self-generation and self-storage".There are both"upper generation and lower storage"and"self-generation and self-storage"in the platform margin zone.In addition,in the case of communication between deep-large faults and the Changchengian system paleo-rift trough,there may also exist a"lower generation and upper reservoir"combination between the platform and the margin.(4)There are four new exploration fields including Qingyang paleo-uplift pre-Carboniferous weathering crust,L-shape platform margin zone in southwestern margin of the basin,Ordovician subsalt assemblage in central and eastern parts of the basin,and Mesoproterozoic–Cambrian.Among them,pre-Carboniferous weathering crust and L-shape platform margin facies zone are more realistic replacement areas,and Ordovician subsalt assemblage and the Proterozoic-Cambrian have certain potential and are worth exploring.
基金CNPC Major Science and Technology Projects(2023ZZ07-01,2023ZZ07-02,2023ZZ07-05).
文摘The global trends in deepwater oil and gas exploration,characteristics of deepwater oil and gas discovery,and layout of deepwater oil and gas exploration business by seven major international oil companies are systematically analyzed using commercial databases(e.g.S&P Global and Rystad)and public information of oil companies.The deepwater area is currently the most important domain for global oil and gas exploration and discovery,with the most discoveries and reserves in passive continental margin basins.The deepwater discoveries have the greatest contribution to the total newly discovered oil and gas reserves in the sea areas,with an increasing number of lithological reservoirs discovered,and oil and gas discoveries mainly distributed in the Mesozoic–Cenozoic.The seven major international oil companies are widely active in various aspects of deepwater oil and gas exploration and development,and play a leading role.Based on years of theoretical understanding of global oil and gas geology and resource evaluation,it is proposed that favorable deepwater exploration areas in the future will mainly focus on three major areas:the Atlantic coast,the Indian Ocean periphery,and the Arctic Ocean periphery.Six suggestions are put forward for expanding overseas deepwater oil and gas exploration business:first,expand the sources for obtaining multi-user seismic data and improve the scientific selection of deepwater exploration areas;second,increase efforts to obtain deepwater exploration projects in key areas;third,adopt various methods to access into/exit from resource licenses flexibly;fourth,acquire licenses with large equity and operate in“dual-exploration”model;fifth,strengthen cooperation with leading international oil companies in deepwater technology;and sixth,improve business operation capabilities and gradually transform from“non-operators”to“operators”.
文摘The working area is located in the industrially developed region of Rongshengpu-Qianjin, where a surface water system is developed, surface-layer lithology is complicated, and various kinds of hydrocarbon traps are buried at depth. The seismic data acquired previously couldn't be interpreted due to the complex surface and geological conditions. Taking secondary 3D seismic from the Rongshengpu-Qianjin area as an example, this paper describes a set of techniques designed to overcome these difficulties and improve the quality of seismic data. The applied techniques included flexible acquisition geometry, low-noise receiver conditions, quantitative quality control, and so on.
基金Supported by the China National Science and Technology Major Project(2016E-0204).
文摘Lower Paleozoic carbonate rocks are an important exploration area in craton area of the Tarim Basin,with the proven oil and gas reserves of more than 2.2×10^8 t,but no large-scale discovery has been made in the Gucheng area so far.The key issues restricting exploration are that the source rock,reservoir scale and law of oil and gas enrichment are unclear.By systematically examining the petroleum geological conditions of Lower Paleozoic carbonate rocks,the following findings are reached:(1)Source rocks of slope-basin facies developed in Cambrian-Lower Ordovician in the Gucheng area.(2)The dolomitized beach in the lower part of Ordovician Yingshan Formation has large-scale reservoirs,good reservoir-cap assemblage and developed gas source faults,and is an important field for increasing reserves and production in the near future;hydrocarbon enrichment is controlled by reservoir and gas source faults,and the central dolomitized beach zone is the main exploration area.(3)The Cambrian platform margin reef beach,large in scale,good in physical properties and close to source rocks,has the possibility to form monolithic gas field;the caprock and preservation conditions are the key factors for hydrocarbon enrichment;the northern part of the phasesⅠandⅡplatform margin reefs has better sealing conditions,and is the main direction of next exploration.(4)Limestone fault solution reservoirs in the upper part of Ordovician Yingshan Formation,controlled by faults and small in scale,but good in reservoir-cap combination,worth exploring.(5)The granular limestone beach of Ordovician Yijianfang Formation is well developed and gas-bearing,but short in exposure dissolution time,and the reservoirs are strongly heterogeneous,and are a potential exploration field.
文摘Laiyang formation of Jiaolai Basin is the target stratum for oil and gas exploration. By measuring several field sections, the authors find that Laiyang formation reveals the whole processes from development to death of the lake basin and its sedimentary facies differ in different structural locations. Analyses about sedimentary facies and paleocurrent orientations in association with researches about the positive tectonic units such as Dayetou horseback and Chaigou horst indicate that Laiyang sag is a relatively independent sedimentary unit that shows great water depth typical of deep lake or semideep lake and was controlled by Wulongcun fault during the deposition period of Laiyang formation. Its sediments mainly originated from Jiaobei uplift area and Dayetou horseback. Gaomi-Zhucheng sag was a fast-filled basin controlled by Wurong fault and Yishu fault zone, being high in the northeast and low in the northwest and characterized by the development of pluvial facies and fluvial facies in most areas, and with the development of lake facies being limited to local low-lying regions. Selection of advantageous hydrocarbon reservoir areas for exploration purpose mainly relies on the sedimentation pattern of prototype basin and conservation conditions. The central-west area of Laiyang sag covered by overlying Laiyang formation is the most advantageous exploration area.
基金supported by National Science and Technology Major Project entitled Test and Application Promotion of Shale Gas Exploration and Evaluation Techniques(No.2016ZX05034)a project organized by the China Geological Survey entitled Shale Gas Geological Survey in Northeastern Yunnan(No.DD20190080).
文摘Dark mudstones and shales of the Carboniferous Jiusi Formation are widely developed in northern Guizhou and Yunnan provinces, SW China. However, the distribution, reservoir characterization, and exploration potential of organic-rich shales in this area are yet to be quantified, thus limiting the prospect of shale gas in this area. This study investigates the basic geological conditions of Jiusi shale gas, using core data, well-logs, and some other test data, obtaining the following results. The organic-rich shales are mainly composed of deltaic-to-shallow-shelf deposits, with thickness ranging from 0 to 450 m, and above 350 m around the subsidence center. The organic matter is mainly type Ⅱ kerogen with TOC content of mostly 1%–2%, indicating a moderate maturity. The argillaceous shale reservoirs are indicative of strong heterogeneity, high clay minerals content, low porosity, low permeability, high specific surface area, and relatively developed secondary porosity. The gas-log anomaly intervals obtained from the survey wells have a cumulative thickness that is apparently greater than 200 m, and a few shale intervals showing high desorbed and adsorbed gas contents. Due to complex structures in the study area, conditions responsible for shale gas occurrence and trapping are generally moderate. However, areas having wide and gentle folds with moderate depth of burial reveals relatively favorable conditions of hydrocarbon traps. In contrast with typical marine-continental transitional shales, the Jiusi shale have better geological conditions for shale gas preservation. The analysis of the geological framework and hydrocarbon potential of Carboniferous Jiusi Formation provide more insight for the exploration of Carboniferous shale gas in southern China.
文摘3D geological modeling is an inevitable choice for coal exploration to adapt to the transformation of coal mining for green, fine, transparent and Intelligent mining. In the traditional Coalfield exploration geological reports, the spatial expression form for the coal seams and their surrounding rocks are 2D maps. These 2D maps are excellent data sources for constructing 3D geological models of coal field exploration areas. How to construct 3D models from these 2D maps has been studying in coal exploration industry for a long time, and still no breakthrough has been achieved so far. This paper discusses the principle, method and software design idea of constructing 3D geological model of an exploration area with 2D maps made by AutoCAD/MapGIS. At first, the paper analyzes 3D geological surface expression mode in 3D geological modeling software. It is pointed out that although contour method has unique advantages in coal field exploration, TIN (Triangular Irregular Network) is still the standard configuration of 3D modeling software for coal field. Then, the paper discusses the method of 2D line features obtaining elevation and upgrading 2D curve to 3D curve. Next, the method of semi-automatic partition is introduced to build the boundary ring of the surface patch, that is, the user clicks and selects the line feature to build the outer boundary ring of the surface patch. Then, Auto-process method for fault line inside of the outer boundary ring is discussed, it including construction of fault ring, determining fault ring being normal fault ring or reverse fault ring and an algorithm of dealing with normal fault ring. An algorithm of dealing with reverse fault ring is discussed detailly, the method of expanding reverse fault ring and dividing the duplicate area in reverse fault into two portions is introduced. The paper also discusses the method of extraction ridge line/valley line, the construction of fault plane, the construction of stratum and coal body. The above ideas and methods have been initially implemented in the “3D modeling platform for coal field exploration” software, and applied to the 3D modeling practice of data from several coal field exploration areas in Ningxia, Shanxi, Qinghai, etc.
文摘The deepwater area of southern Qiongdongnan Basin is a hydrocarbon exploration frontier and mainly located on the continental slope in the northwestern South China Sea.Its tectonic and depositional evolution is similar to the typical marginal deepwater areas abroad where oils have been discovered.Favorable hydrocarbon conditions in this area are as follows:(1) three sets of source rocks (including lacustrine mudstone of Eocene,coastal plain coal-bearing strata and semi-closed shallow sea mudstone of Oligocene,and marine mudstone
文摘To fully exploit the technical advantages of the large-depth and high-precision artificial source electromagnetic method in the complex structure area of southern Sichuan and compensate for the shortcomings of the conventional electromagnetic method in exploration depth,precision,and accuracy,the large-depth and high-precision wide field electromagnetic method is applied to the complex structure test area of the Luochang syncline and Yuhe nose anticline in the southern Sichuan.The advantages of the wide field electromagnetic method in detecting deep,low-resistivity thin layers are demonstrated.First,on the basis of the analysis of physical property data,a geological–geoelectric model is established in the test area,and the wide field electromagnetic method is numerically simulated to analyze and evaluate the response characteristics of deep thin shale gas layers on wide field electromagnetic curves.Second,a wide field electromagnetic test is conducted in the complex structure area of southern Sichuan.After data processing and inversion imaging,apparent resistivity logging data are used for calibration to develop an apparent resistivity interpretation model suitable for the test area.On the basis of the results,the characteristics of the electrical structure change in the shallow longitudinal formation of 6 km are implemented,and the transverse electrical distribution characteristics of the deep shale gas layer are delineated.In the prediction area near the well,the subsequent data verification shows that the apparent resistivity obtained using the inversion of the wide field electromagnetic method is consistent with the trend of apparent resistivity revealed by logging,which proves that this method can effectively identify the weak response characteristics of deep shale gas formations in complex structural areas.This experiment,it is shown shows that the wide field electromagnetic method with a large depth and high precision can effectively characterize the electrical characteristics of deep,low-resistivity thin layers in complex structural areas,and a new set of low-cost evaluation technologies for shale gas target layers based on the wide field electromagnetic method is explored.
文摘In Mesozoic-Cenozoic faulted basin in the periphery of Daqing exploration area, the clastic reservoirs mainly consist of siltstone and gravel-bearing sandstone. The electrical conductivity of the reservoirs is complicated due to the complex pore structures, which cannot be accurately interpreted with commonly used model. In order to solve the problem, a three-water model has been applied in this study based on in-depth analysis of the conductive mechanism of rocks in the explored area, and favorable application results are achieved.
基金Supported by the China National Science and Technology Major Project(2016ZX05006-003)
文摘To realize high-efficiency and sustainable exploration of the Jiyang depression at the stage of high exploration degree, a hydrocarbon accumulation-geological evaluation method is developed on the basis of current geologic knowledge and extent of fine exploration. The concept of "layer exploration unit" is proposed in the study, and it is defined as an exploration geological unit that has a relatively complete and unified tectonic system, sedimentary system and hydrocarbon migration & accumulation system in a tectonic layer or tectonic sublayer within a fault basin. Then, an approach to dividing and evaluating the "layer exploration unit" is developed. With this approach, the Jiyang depression is divided into 305 layer exploration units, thus helping realize precise and stereoscopic geological understanding and exploration deployment. Fine splitting of remaining resources and benefit evaluation of exploration targets are conducted by "layer exploration units". As a result, 66 efficient "layer exploration units" in four major areas(i.e. Paleogene upper Es4-Dongying Formation, Neogene Minghuazhen Formation-Guantao Formation, Paleozoic buried-hill, and Paleogene Kongdian Formation-lower Es4) are determined as the targets for obtaining more reserves and breakthroughs in the short and medium term.
基金supported by the National Natural Science Foundation of China (Grants Nos. 41902242)the Geological Survey Projects Foundation of the Institute of Hydrogeology and Environmental Geology (Grants Nos. DD20190303, DD20221773)。
文摘The geothermal resources in Fujian Province are mainly hydrothermal resources of medium-low temperature.To better understand the whole process and conditions of heat control in the middle and deep crust,this study focuses on the analysis of heat accumulation model in Hongtang Area of Xiamen,and the main conditions of the model such as faults and sags are explored and interpreted in detail by using gravity and wide-field electromagnetic methods.4 main faults(F33,F2,F12 and HT-F1)and 10 secondary faults(HT-F2,HT-F3,HT-F4,HT-F5,HT-F6,HT-F7,HT-F8,HT-F9,HT-F10 and HT-F11)were inferred,and the distribution range of sags was delineated.The convective geothermal system is composed of four components:Heat source,geothermal reservoir,heat-conductive fault and heat retaining cover,which form a quaternary heat accumulation model.According to the model,the intersection of the main faults F12,HTF1 and F33 can be delineated as the primary target area of geothermal exploration,while the intersection of the secondary faults(F12 and HT-F6;F12 and HT-F2;HT-F9,HT-F10 and F12;F12 and HT-F11;F33 and HT-F3;HT-F8 and HT-F3;HT-F2,HT-F10 and HT-F1)can be delineated as the secondary target area.Borehole DR01,which is located in the primary target area,shows that the water temperature increases from fast to slow in the depth range of 0–500 m,and stays at 36℃below 500 m.The reliability of the heat accumulation model and the target area was tested via geothermal boreholes,which is of great significance to the exploitation and utilization of geothermal resources in Hongtang Area of Xiamen.
基金supported by the Funds for the program of the National Natural Science Foundation (Noes. 41572060, U1133602)Projects of YM Lab (2011)Innovation Team of Yunnan province and KMUST (2008,2012)
文摘1 Introduction The huize Zn-Pb ore district in Yunnan province is locatedinthecentralsouthernofthe Sichuan—Yunnan—GuizhouPb-ZnPoly-metallic Mineralization Area in the southwestern margin of the Yangtze Block,and is strictly controlled by fault structures.It has developed to one of the famous production bases of lead&zinc and germanium in China.
文摘The Baguamiao superlarge gold deposit in Shaanxi Province is one of the typical cases in China that are hosted by sedimentary rocks. Explorers and researchers have discussed the gold mineralization enrichment conditions by studying sulphur, oxygen, carbon, silicon stable isotopes and mineralizing fluid features of the Baguamiao gold deposit and proposed a hydrothermal sedimentation-magmatic reconstructing gold mineralization model featuring multi-sources of ore-forming materials and multistage mineralizations. In addition, prospecting for “Baguamiao-type” gold deposits was started in the Fengtai Basin and a great number of important prospecting targets such as Tonglinggou, Simaoling, Guoansi and Dachaigou were discovered.