Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Ou...Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Our review traces the evolution of CNN, emphasizing the adaptation and capabilities of the U-Net 3D model in automating seismic fault delineation with unprecedented accuracy. We find: 1) The transition from basic neural networks to sophisticated CNN has enabled remarkable advancements in image recognition, which are directly applicable to analyzing seismic data. The U-Net 3D model, with its innovative architecture, exemplifies this progress by providing a method for detailed and accurate fault detection with reduced manual interpretation bias. 2) The U-Net 3D model has demonstrated its superiority over traditional fault identification methods in several key areas: it has enhanced interpretation accuracy, increased operational efficiency, and reduced the subjectivity of manual methods. 3) Despite these achievements, challenges such as the need for effective data preprocessing, acquisition of high-quality annotated datasets, and achieving model generalization across different geological conditions remain. Future research should therefore focus on developing more complex network architectures and innovative training strategies to refine fault identification performance further. Our findings confirm the transformative potential of deep learning, particularly CNN like the U-Net 3D model, in geosciences, advocating for its broader integration to revolutionize geological exploration and seismic analysis.展开更多
The working area is located in the industrially developed region of Rongshengpu-Qianjin, where a surface water system is developed, surface-layer lithology is complicated, and various kinds of hydrocarbon traps are bu...The working area is located in the industrially developed region of Rongshengpu-Qianjin, where a surface water system is developed, surface-layer lithology is complicated, and various kinds of hydrocarbon traps are buried at depth. The seismic data acquired previously couldn't be interpreted due to the complex surface and geological conditions. Taking secondary 3D seismic from the Rongshengpu-Qianjin area as an example, this paper describes a set of techniques designed to overcome these difficulties and improve the quality of seismic data. The applied techniques included flexible acquisition geometry, low-noise receiver conditions, quantitative quality control, and so on.展开更多
The recent advances of 3D seismic technique applied in geological study of sedimentary basin analysis were reviewed.The achievements in the study of the sedimentology,structural analysis, fluid-rock interaction and ig...The recent advances of 3D seismic technique applied in geological study of sedimentary basin analysis were reviewed.The achievements in the study of the sedimentology,structural analysis, fluid-rock interaction and igneous geology were summarized.Because 3D seismic resolution and interpretation technology are enhanced surprisingly。展开更多
3D visualization technology is a tool used for displaying, describing, and understanding the characteristics of geologic bodies, and features high efficiency, objective accuracy, visual expression, etc. In this paper,...3D visualization technology is a tool used for displaying, describing, and understanding the characteristics of geologic bodies, and features high efficiency, objective accuracy, visual expression, etc. In this paper, the man-machine interactive interpretation and 3D visualization technology rapidly displaying and analyzing the 3D seismic data of hydrate ore volume is researched and developed using the hybrid rendering technique. Through the integrated interpretation on the 3D space structure, stratum, and seismic attributes, the visualized multi-attribute superimposition analysis is implemented for describing the spatial distribution characteristics of hydrate ore volume and exquisitely describing the subtle geological characteristics of hydrate ore volume. By the hybrid rendering technique, authentication and interpretation are provided for the geological exploration work, so as to greatly enhance the visualization and accuracy of the geological analysis, and also provide a good decision-making foundation for the subsequent development of resources.展开更多
Forecasting subtle traps by sequence stratigraphy and 3D seismic data is a sensitive topic in hydrocarbon exploration. Research on subtle traps by geophysical data is the most popular and difficult. Based on the suffi...Forecasting subtle traps by sequence stratigraphy and 3D seismic data is a sensitive topic in hydrocarbon exploration. Research on subtle traps by geophysical data is the most popular and difficult. Based on the sufficiently drilling data, log data, core data and 3D seismic data, sediment sequence of Qikou depression, Huanghua basin was partitioned by using sequence stratigraphy theory. Each sediment sequence system mode was built. Sediment faces of subtle traps were pointed out. Dominating factors forming subtle traps were analyzed. Sandstone seismic rock physics and its response were studied in Tertiary System. Sandstone geophysical response and elastic modulus vary laws with pressure, temperature, porosity, depth were built. Experimental result and practice shows that it is possible using seismic information forecasting subtle traps. Integrated using geology, log, drilling data, special seismic processing technique, interpretation technique, high precision horizon calibration technique, 3D seismic visualizing interpretation, seismic coherence analysis, attribute analysis, logging-constrained inversion, time frequency analysis, subtle trapsobject is identified and interpreted. Finally, advantage object of subtle trap in this area was determined. Bottomland sand stratigraphic and lithologic reservoirs in Qinan slope zone have been founded by means of high resolution 3D seismic data field technique, high resolution 3D seismic data processing technique and seismic wave impendence inversion technique.展开更多
Long-span bridges are special structures that require advanced analysis techniques to examine their performance. This paper presents a procedure developed to model the Confederation Bridge using 3-D beam elements. The...Long-span bridges are special structures that require advanced analysis techniques to examine their performance. This paper presents a procedure developed to model the Confederation Bridge using 3-D beam elements. The model was validated using the data collected before the opening of the bridge to the public. The bridge was instrumented to conduct fullscale static and dynamic tests. The static tests were to measure the deflection of the bridge pier while the dynamic tests to measure the free vibrations of the pier due to a sudden release of the static load. Confederation Bridge is one of the longest reinforced concrete bridges in the world. It connects the province of Prince Edward Island and the province of New Brunswick in Canada. Due to its strategic location and vital role as a transportation link between these two provinces, it was designed using higher safety factors than those for typical highway bridges. After validating the present numerical model, a procedure was developed to evaluate the performance of similar bridges subjected to traffic and seismic loads. It is of interest to note that the foundation stiffness and the modulus of elasticity of the concrete have significant effects on the structural responses of the Confederation Bridge.展开更多
文摘Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Our review traces the evolution of CNN, emphasizing the adaptation and capabilities of the U-Net 3D model in automating seismic fault delineation with unprecedented accuracy. We find: 1) The transition from basic neural networks to sophisticated CNN has enabled remarkable advancements in image recognition, which are directly applicable to analyzing seismic data. The U-Net 3D model, with its innovative architecture, exemplifies this progress by providing a method for detailed and accurate fault detection with reduced manual interpretation bias. 2) The U-Net 3D model has demonstrated its superiority over traditional fault identification methods in several key areas: it has enhanced interpretation accuracy, increased operational efficiency, and reduced the subjectivity of manual methods. 3) Despite these achievements, challenges such as the need for effective data preprocessing, acquisition of high-quality annotated datasets, and achieving model generalization across different geological conditions remain. Future research should therefore focus on developing more complex network architectures and innovative training strategies to refine fault identification performance further. Our findings confirm the transformative potential of deep learning, particularly CNN like the U-Net 3D model, in geosciences, advocating for its broader integration to revolutionize geological exploration and seismic analysis.
文摘The working area is located in the industrially developed region of Rongshengpu-Qianjin, where a surface water system is developed, surface-layer lithology is complicated, and various kinds of hydrocarbon traps are buried at depth. The seismic data acquired previously couldn't be interpreted due to the complex surface and geological conditions. Taking secondary 3D seismic from the Rongshengpu-Qianjin area as an example, this paper describes a set of techniques designed to overcome these difficulties and improve the quality of seismic data. The applied techniques included flexible acquisition geometry, low-noise receiver conditions, quantitative quality control, and so on.
文摘The recent advances of 3D seismic technique applied in geological study of sedimentary basin analysis were reviewed.The achievements in the study of the sedimentology,structural analysis, fluid-rock interaction and igneous geology were summarized.Because 3D seismic resolution and interpretation technology are enhanced surprisingly。
文摘3D visualization technology is a tool used for displaying, describing, and understanding the characteristics of geologic bodies, and features high efficiency, objective accuracy, visual expression, etc. In this paper, the man-machine interactive interpretation and 3D visualization technology rapidly displaying and analyzing the 3D seismic data of hydrate ore volume is researched and developed using the hybrid rendering technique. Through the integrated interpretation on the 3D space structure, stratum, and seismic attributes, the visualized multi-attribute superimposition analysis is implemented for describing the spatial distribution characteristics of hydrate ore volume and exquisitely describing the subtle geological characteristics of hydrate ore volume. By the hybrid rendering technique, authentication and interpretation are provided for the geological exploration work, so as to greatly enhance the visualization and accuracy of the geological analysis, and also provide a good decision-making foundation for the subsequent development of resources.
基金Project(2003034470) supported by the Postdoctoral Science Foundation of China project supported by the Postdoctoral Science Foundation of Central South University
文摘Forecasting subtle traps by sequence stratigraphy and 3D seismic data is a sensitive topic in hydrocarbon exploration. Research on subtle traps by geophysical data is the most popular and difficult. Based on the sufficiently drilling data, log data, core data and 3D seismic data, sediment sequence of Qikou depression, Huanghua basin was partitioned by using sequence stratigraphy theory. Each sediment sequence system mode was built. Sediment faces of subtle traps were pointed out. Dominating factors forming subtle traps were analyzed. Sandstone seismic rock physics and its response were studied in Tertiary System. Sandstone geophysical response and elastic modulus vary laws with pressure, temperature, porosity, depth were built. Experimental result and practice shows that it is possible using seismic information forecasting subtle traps. Integrated using geology, log, drilling data, special seismic processing technique, interpretation technique, high precision horizon calibration technique, 3D seismic visualizing interpretation, seismic coherence analysis, attribute analysis, logging-constrained inversion, time frequency analysis, subtle trapsobject is identified and interpreted. Finally, advantage object of subtle trap in this area was determined. Bottomland sand stratigraphic and lithologic reservoirs in Qinan slope zone have been founded by means of high resolution 3D seismic data field technique, high resolution 3D seismic data processing technique and seismic wave impendence inversion technique.
文摘Long-span bridges are special structures that require advanced analysis techniques to examine their performance. This paper presents a procedure developed to model the Confederation Bridge using 3-D beam elements. The model was validated using the data collected before the opening of the bridge to the public. The bridge was instrumented to conduct fullscale static and dynamic tests. The static tests were to measure the deflection of the bridge pier while the dynamic tests to measure the free vibrations of the pier due to a sudden release of the static load. Confederation Bridge is one of the longest reinforced concrete bridges in the world. It connects the province of Prince Edward Island and the province of New Brunswick in Canada. Due to its strategic location and vital role as a transportation link between these two provinces, it was designed using higher safety factors than those for typical highway bridges. After validating the present numerical model, a procedure was developed to evaluate the performance of similar bridges subjected to traffic and seismic loads. It is of interest to note that the foundation stiffness and the modulus of elasticity of the concrete have significant effects on the structural responses of the Confederation Bridge.