COVID-19 pandemic restrictions limited all social activities to curtail the spread of the virus.The foremost and most prime sector among those affected were schools,colleges,and universities.The education system of en...COVID-19 pandemic restrictions limited all social activities to curtail the spread of the virus.The foremost and most prime sector among those affected were schools,colleges,and universities.The education system of entire nations had shifted to online education during this time.Many shortcomings of Learning Management Systems(LMSs)were detected to support education in an online mode that spawned the research in Artificial Intelligence(AI)based tools that are being developed by the research community to improve the effectiveness of LMSs.This paper presents a detailed survey of the different enhancements to LMSs,which are led by key advances in the area of AI to enhance the real-time and non-real-time user experience.The AI-based enhancements proposed to the LMSs start from the Application layer and Presentation layer in the form of flipped classroom models for the efficient learning environment and appropriately designed UI/UX for efficient utilization of LMS utilities and resources,including AI-based chatbots.Session layer enhancements are also required,such as AI-based online proctoring and user authentication using Biometrics.These extend to the Transport layer to support real-time and rate adaptive encrypted video transmission for user security/privacy and satisfactory working of AI-algorithms.It also needs the support of the Networking layer for IP-based geolocation features,the Virtual Private Network(VPN)feature,and the support of Software-Defined Networks(SDN)for optimum Quality of Service(QoS).Finally,in addition to these,non-real-time user experience is enhanced by other AI-based enhancements such as Plagiarism detection algorithms and Data Analytics.展开更多
In recent years,natural hydrogen has been discovered in various geological environments both domestically and internationally,which has sparked a global interest among geologists and led to a surge in the exploration ...In recent years,natural hydrogen has been discovered in various geological environments both domestically and internationally,which has sparked a global interest among geologists and led to a surge in the exploration of hydrogen gas(Klein et al.,2019;Prinzhofer et al.,2019;Moretti and Webber,2021;Scott,2021;Bezruchko,2022).However,there is a lack of research on the occurrence state of natural hydrogen gas,which hinders a deeper understanding of its behavior in underground storage and migration.展开更多
A detailed understanding of the distribution and potential of natural gas hydrate(NGHs)resources is crucial to fostering the industrialization of those resources in the South China Sea,where NGHs are abundant.In this ...A detailed understanding of the distribution and potential of natural gas hydrate(NGHs)resources is crucial to fostering the industrialization of those resources in the South China Sea,where NGHs are abundant.In this study,this study analyzed the applicability of resource evaluation methods,including the volumetric,genesis,and analogy methods,and estimated NGHs resource potential in the South China Sea by using scientific resource evaluation methods based on the factors controlling the geological accumulation and the reservoir characteristics of NGHs.Furthermore,this study compared the evaluation results of NGHs resource evaluations in representative worldwise sea areas via rational analysis.The results of this study are as follows:(1)The gas hydrate accumulation in the South China Sea is characterized by multiple sources of gas supply,multi-channel migration,and extensive accumulation,which are significantly different from those of oil and gas and other unconventional resources.(2)The evaluation of gas hydrate resources in the South China Sea is a highly targeted,stratified,and multidisciplinary evaluation of geological resources under the framework of a multi-type gas hydrate resource evaluation system and focuses on the comprehensive utilization of multi-source heterogeneous data.(3)Global NGHs resources is n×10^(15)m^(3),while the NGHs resources in the South China Sea are estimated to be 10^(13)m^(3),which is comparable to the abundance of typical marine NGHs deposits in other parts of the world.In the South China Sea,the NGHs resources have a broad prospect and provide a substantial resource base for production tests and industrialization of NGHs.展开更多
Reconstructing paleoenvironments has long been considered a vital component for understanding the development and evolution of carbonate reservoirs.The Middle Ordovician Period is considered the archetypical greenhous...Reconstructing paleoenvironments has long been considered a vital component for understanding the development and evolution of carbonate reservoirs.The Middle Ordovician Period is considered the archetypical greenhouse interval,and also a critical period in biological evolution.The Middle Darriwilian isotope carbon excursion has been observed in many areas of the world and may be related to the biological explosions caused by decreases in the temperature.The thick carbonate rocks in the fifth member of the Middle Ordovician Majiagou Formation in the Dingbei area of the Ordos Basin were chosen as an example,based on the concentration of major,trace and rare earth elements as well as C,O and Sr isotopic analyses,the paleoenvironment was reconstructed.And its impact on natural gas exploration was analyzed.The results show that the seawater paleotemperature was 29℃,suboxicanoxic paleoredox conditions were observed,and the seawater paleosalinity was high.A large number of plankton in the biological explosion caused a rapid increase in the total organic carbon in carbonate rocks,which provided natural gas as supplemental source rocks.Affected by early meteoric water,the dissolution of gypsum laid the foundation for high-quality reservoirs,and the residual gypsum also further preserved natural gas.This study provides new data for the paleoenvironment and a theoretical basis for further natural gas exploration.展开更多
Conductor and suction anchor are the key equipment providing bearing capacity in the field of deep-water drilling or offshore engineering,which have the advantages of high operation efficiency and short construction p...Conductor and suction anchor are the key equipment providing bearing capacity in the field of deep-water drilling or offshore engineering,which have the advantages of high operation efficiency and short construction period.In order to drill a horizontal well in the shallow hydrate reservoir in the deep water,the suction anchor wellhead assembly is employed to undertake the main vertical bearing capacity in the second round of hydrate trial production project,so as to reduce the conductor running depth and heighten the kick-off point position.However,the deformation law of the deep-water suction anchor wellhead assembly under the moving load of the riser is not clear,and it is necessary to understand the lateral bearing characteristics to guide the design of its structural scheme.Based on 3D solid finite element method,the solid finite element model of the suction anchor wellhead assembly is established.In the model,the seabed soil is divided into seven layers,the contact between the wellhead assembly and the soil is simulated,and the vertical load and bending moment are applied to the wellhead node to simulate the riser movement when working in the deep water.The lateral bearing stability of conventional wellhead assembly and suction anchor wellhead assembly under the influence of wellhead load is discussed.The analysis results show that the bending moment is the main factor affecting the lateral deformation of the wellhead string;the anti-bending performance from increasing the outer conductor diameter is better than that from increasing the conductor wall thickness;for the subsea wellhead,the suction anchor obviously improves the lateral bearing capacity and reduces the lateral deformation.The conduct of the suction anchor wellhead assembly still needs to be lowered to a certain depth that below the maximum disturbed depth to ensure the lateral bearing stability,Thus,a method for the minimum conductor running depth for the suction anchor wellhead assembly is developed.The field implementations show that compared with the first round of hydrate trial production project,the conductor running depth is increased by 9.42 m,and there is no risk of wellhead overturning during the trial production.The method for determining the minimum conductor running depth in this paper is feasible and will still play an important role in the subsequent hydrate exploration and development.展开更多
As an efficient clean energy,natural gas hydrate(NGH)has become a hot topic in recent researches.Since1990 s,China has made great achievements and progress in NGH exploration in the South China Sea(SCS),including dete...As an efficient clean energy,natural gas hydrate(NGH)has become a hot topic in recent researches.Since1990 s,China has made great achievements and progress in NGH exploration in the South China Sea(SCS),including determination of the favorable distribution areas and favorable strata thickness,identification of the dual source for accumulation,evaluation of the prospective gas contents,verification of the widespread existence,and confirmation of the technical recoverability of NGH resources.However,there are three major challenges in the NGH studies.First,all the 24 national key and major projects in the SCS focused on trial production engineering and geological engineering in the past 20 years,while 8 of the 10 international NGH research projects focused on resource potential.Second,resource evaluation methods are outdated and some parameter selection are subjective.Third,the existing resource evaluation results are low-level with a great uncertainty,and cannot be used to guide NGH exploration and production or strategic research.To improve the evaluation of NGH resources in the SCS,future researches should focus on four aspects:(1)improve the research on the criterion of the objective existence of NGH and the method of prediction and evaluation;(2)apply new theories and methods from the global NGH research;(3)boost the research on the difference and correlation of the conditions of hydrocarbon migration and accumulation in different basins;(4)innovate the theory and method of NGH resource potential evaluation.展开更多
Small celestial body exploration is of great significance to deep space activities. The dynamics and control of orbits around small celestial bodies is of top priority in the exploration research. It includes the mode...Small celestial body exploration is of great significance to deep space activities. The dynamics and control of orbits around small celestial bodies is of top priority in the exploration research. It includes the modeling of dynamics environment and the orbital dynamics mechanism. This paper introduced state-ofthe-art researches, major challenges, and future trends in this field. Three topics are mainly discussed: the gravitational field modeling of irregular-shaped small celestial bodies, natural orbital dynamics and control, and controlled orbital dynamics. Finally, constructive suggestions are made for China’s future space exploration missions.展开更多
Large amounts of gas hydrate are distributed in the northern slope of the South China Sea,which is a potential threat of methane leakage.Aerobic methane oxidation by methanotrophs,significant methane biotransformation...Large amounts of gas hydrate are distributed in the northern slope of the South China Sea,which is a potential threat of methane leakage.Aerobic methane oxidation by methanotrophs,significant methane biotransformation that occurs in sediment surface and water column,can effectively reduce atmospheric emission of hydrate-decomposed methane.To identify active aerobic methanotrophs and their methane oxidation potential in sediments from the Shenhu Area in the South China Sea,multi-day enrichment incubations were conducted in this study.The results show that the methane oxidation rates in the studied sediments were 2.03‒2.36μmol/gdw/d,which were higher than those obtained by sediment incubations from other areas in marine ecosystems.Thus the authors suspect that the methane oxidation potential of methanotrophs was relatively higher in sediments from the Shenhu Area.After the incubations family Methylococcaea(type I methanotrophs)mainly consisted of genus Methylobacter and Methylococcaea_Other were predominant with an increased proportion of 70.3%,whereas Methylocaldum decreased simultaneously in the incubated sediments.Collectively,this study may help to gain a better understanding of the methane biotransformation in the Shenhu Area.展开更多
In this work,the authors monitored the formation and dissociation process of methane hydrate in four different rock core samples through nuclear magnetic resonance(NMR)relaxation time(T_(2))and 2D imaging measurement....In this work,the authors monitored the formation and dissociation process of methane hydrate in four different rock core samples through nuclear magnetic resonance(NMR)relaxation time(T_(2))and 2D imaging measurement.The result shows that the intensity of T_(2) spectra and magnetic resonance imaging(MRI)signals gradually decreases in the hydrate formation process,and at the same time,the T_(2) spectra move toward the left domain as the growth of hydrate in the pores of the sample accelerates the decay rate.The hydrate grows and dissociates preferentially in the purer sandstone samples with larger pore size and higher porosity.Significantly,for the sample with lower porosity and higher argillaceous content,the intensity of the T_(2) spectra also shows a trend of a great decrease in the hydrate formation process,which means that high-saturation gas hydrate can also be formed in the sample with higher argillaceous content.The changes in MRI of the sample in the process show that the formation and dissociation of methane hydrate can reshape the distribution of water in the pores.展开更多
Based on field outcrop investigation,interpretation and analysis of drilling and seismic data,and consulting on a large number of previous research results,the characteristics of ancient marine hydrocarbon source rock...Based on field outcrop investigation,interpretation and analysis of drilling and seismic data,and consulting on a large number of previous research results,the characteristics of ancient marine hydrocarbon source rocks,favorable reservoir facies belts,hydrocarbon migration direction and reservoir-forming law in the Ordos Basin have been studied from the viewpoints of North China Craton breakup and Qilian-Qinling oceanic basin opening and closing.Four main results are obtained:(1)Controlled by deep-water shelf-rift,there are three suites of source rocks in the Ordos Basin and its periphery:Mesoproterozoic,Lower Cambrian and Middle-Upper Ordovician.(2)Controlled by littoral environment,paleo-uplift and platform margin,four types of reservoirs are developed in the area:Mesoproterozoic-Lower Cambrian littoral shallow sea quartz sandstone,Middle-Upper Cambrian–Ordovician weathering crust and dolomitized reservoir,and Ordovician L-shape platform margin reef and beach bodies.(3)Reservoir-forming assemblages vary greatly in the study area,with"upper generation and lower storage"as the main pattern in the platform,followed by"self-generation and self-storage".There are both"upper generation and lower storage"and"self-generation and self-storage"in the platform margin zone.In addition,in the case of communication between deep-large faults and the Changchengian system paleo-rift trough,there may also exist a"lower generation and upper reservoir"combination between the platform and the margin.(4)There are four new exploration fields including Qingyang paleo-uplift pre-Carboniferous weathering crust,L-shape platform margin zone in southwestern margin of the basin,Ordovician subsalt assemblage in central and eastern parts of the basin,and Mesoproterozoic–Cambrian.Among them,pre-Carboniferous weathering crust and L-shape platform margin facies zone are more realistic replacement areas,and Ordovician subsalt assemblage and the Proterozoic-Cambrian have certain potential and are worth exploring.展开更多
Global energy structure is experiencing the third transition from fossil energy to non-fossil energy,to solve future energy problems,cope with climate change,and achieve net-zero emissions targets by 2050.Hydrogen is ...Global energy structure is experiencing the third transition from fossil energy to non-fossil energy,to solve future energy problems,cope with climate change,and achieve net-zero emissions targets by 2050.Hydrogen is considered to be the most potential clean energy in this century under the background of carbon neutrality.At present,the industrial methods for producing hydrogen are mainly by steam-hydrocarbon(such as coal and natural gas)reforming and by electrolysis of water,while the exploration and development of natural hydrogen had just started.According to this literature review:(1)Natural hydrogen can be divided into three categories,including free hydrogen,hydrogen in inclusions and dissolved hydrogen;(2)natural hydrogen could be mainly from abiotic origins such as by deep-seated hydrogen generation,water-rock reaction or water radiolysis;(3)natural hydrogen is widely distributed and presents great potential,and the potential natural hydrogen sources excluding deep source of hydrogen is about(254±91)×10^(9) m^(3)/a according to a latest estimate;(4)at present,natural hydrogen has been mined in Mali,and the exploration and development of natural hydrogen has also been carried out in Australia,Brazil,the United States and some European countries,to find many favorable areas and test some technical methods for natural hydrogen exploration.Natural hydrogen is expected to be an important part of hydrogen energy production in the future energy pattern.Based on a thorough literature review,this study introduced the origin,classification,and global discovery of natural hydrogen,as well as summarized the current global status and discussed the possibility of natural hydrogen exploration and development,aiming to provide reference for the future natural hydrogen exploration and development.展开更多
Gas hydrate is one kind of potential energy resources that is buried under deep seafloor or frozen areas.The first trial offshore production from the silty reservoir was conducted in the South China Sea by the China G...Gas hydrate is one kind of potential energy resources that is buried under deep seafloor or frozen areas.The first trial offshore production from the silty reservoir was conducted in the South China Sea by the China Geological Survey(CGS).During this test,there were many unique characteristics different from the sand reservoir,which was believed to be related to the clayed silt physical properties.In this paper,simulation experiments,facilities analysis,and theoretical calculation were used to confirm the hydrate structure,reservoir thermo-physical property,and bond water movement rule.And the behavior of how they affected production efficiency was analyzed.The results showed that:It was reasonable to use the structure I rather than structure II methane hydrate phase equilibrium data to make the production plan;the dissociation heat absorbed by hydrate was large enough to cause hydrate self-protection or reformation depend on the reservoir thermal transfer and gas supply;clayed silt got better thermal conductivity compared to coarse grain,but poor thermal convection especially with hydrate;clayed silt sediment was easy to bond water,but the irreducible water can be exchanged to free water under high production pressure,and the most obvious pressure range of water increment was 1.9–4.9 MPa.展开更多
The Junggar Basin is rich in oil but lacks natural gas, which is inconsistent with its geological background of natural gas. Based on the analysis of main source kitchens, and the evaluation of geological setting and ...The Junggar Basin is rich in oil but lacks natural gas, which is inconsistent with its geological background of natural gas. Based on the analysis of main source kitchens, and the evaluation of geological setting and controlling factors of gas accumulation, it is proposed that three significant fields for gas exploration should be emphasized. The first field is the Carboniferous volcanic rocks. The Carboniferous residual sags and large-scale reservoirs were developed in three active continental margins, i.e., the southeastern, northeastern and northwestern active continental margins. Gas accumulation is controlled by the favorable reservoir-caprock combinations composed of volcanic rocks and their superimposed lacustrine mudstones in the Upper Wuerhe Formation. Dinan, Eastern and Zhongguai uplifts are three favorable directions for natural gas exploration. The second field is the Lower combinations in the southern margin of Junggar Basin. Rows of structural traps were developed in this area with ideal preservation conditions and space-time configuration for trap-source combinations. Sets of clastic reservoirs and overpressured mudstones formed perfect reservoir-caprock combinations which are the main exploration direction for Jurassic coal-type gas reservoirs in this area. The seven large structural traps in the middle-east section are recently the most significant targets. The last field is the Central Depression. Large hydrocarbon generating centers, i.e., Mahu, Fukang and Shawan sags, were developed in this area, their source rocks were deeply buried and at highly-mature stage. Thus the Central Depression is a favorable exploration direction for Permian high-over mature gas fields(reservoirs). Great attentions should be paid to two types of targets, the deeply–buried structures and structural-lithologic traps. Based on three main gas systems, gas exploration is suggested be strengthened within three fields and on three levels.展开更多
Natural gas hydrates(NGHs)are a new type of clean energy with great development potential.However,it is urgent to achieve safe and economical NGHs development and utilization.This study established a physical model of...Natural gas hydrates(NGHs)are a new type of clean energy with great development potential.However,it is urgent to achieve safe and economical NGHs development and utilization.This study established a physical model of the study area using the FLAC^(3D) software based on the key parameters of the NGHs production test area in the South China Sea,including the depressurization method,and mechanical parameters of strata,NGHs occurrence characteristics,and the technological characteristics of horizontal wells.Moreover,this study explored the law of influences of the NGHs dissociation range on the stability of the overburden strata and the casing structure of a horizontal well.The results are as follows.With the dissociation of NGHs,the overburden strata of the NGHs dissociation zone subsided and formed funnelshaped zones and then gradually stabilized.However,the upper interface of the NGHs dissociation zone showed significant redistribution and discontinuity of stress.Specifically,distinct stress concentration and corresponding large deformation occurred in the build-up section of the horizontal well,which was thus prone to suffering shear failure.Moreover,apparent end effects occurred at the end of the horizontal well section and might cause the deformation and failure of the casing structure.Therefore,it is necessary to take measures in the build-up section and at the end of the horizontal section of the horizontal well to prevent damage and ensure the wellbore safety in the long-term NGHs exploitation.展开更多
To obtain the characteristics of the gas hydrate reservoirs at GMGS3-W19,extensive geophysical logging data and cores were analyzed to assess the reservoir properties.Sediment porosities were estimated from density,ne...To obtain the characteristics of the gas hydrate reservoirs at GMGS3-W19,extensive geophysical logging data and cores were analyzed to assess the reservoir properties.Sediment porosities were estimated from density,neutron,and nuclear magnetic resonance(NMR)logs.Both the resistivity and NMR logs were used to calculate gas hydrate saturations,the Simandoux model was employed to eliminate the effects of high clay content determined based on the ECS and core data.The density porosity was closely in agreement with the core-derived porosity,and the neutron porosity was higher while the NMR porosity was lower than the density porosity of sediments without hydrates.The resistivity log has higher vertical resolution than the NMR log and thus is more favorable for assessing gas hydrate saturation with strong heterogeneity.For the gas hydrate reservoirs at GMGS3-W19,the porosity,gas hydrate saturation and free gas saturation was 52.7%,42.7%and 10%,on average,respectively.The various logs provide different methods for the comprehensive evaluation of hydrate reservoir,which supports the selection of candidate site for gas hydrate production testing.展开更多
To accurately identify the natural gas hydrates(NGH)in the sea area of the Makran Accretionary Prism,Pakistan,this paper presents the testing and analysis of major and trace elements in sediment samples taken from two...To accurately identify the natural gas hydrates(NGH)in the sea area of the Makran Accretionary Prism,Pakistan,this paper presents the testing and analysis of major and trace elements in sediment samples taken from two stations(S2 and S3)in the area by the China Geological Survey.As shown by testing results,all major elements are slightly different in content between the two stations except SiO2 and CaO.This also applies to the trace elements that include Sr and Ba primarily and Cr,Ni and Zn secondarily.It can be concluded in this study that the tectonic setting of the Makran Accretionary Prism is dominated by oceanic island arc and that provenance of the Makran Accretionary Prism is dominated by felsic igneous provenance,which is at the initial weathering stage and mainly consists of granodiorite.Besides terrigenous detritus,there are sediments possibly originating from Makran-Bela Ophiolite from the northwestern part and Murray Ridge igneous rocks from the southeastern part.The V/Cr,Ni/Co,and V/(V+Ni)ratios indicate that sediments of the two stations are in an oxidation-suboxidation environment.However,the authors infer that the sedimentary environment of the sediments 3.0 m below the seafloor tends to be gradually transformed into a reduction environment by comparison with the Qiongdongnan Basin in the South China Sea where NGH has been discovered.The sediments in the Makran Accretionary Prism are rich in organic matter,with total organic carbon(TOC)content greater than 1%.According to comprehensive research,the organic matter in the sediments mainly originates from marine algae and has high TOC content,which is favorable for the formation of NGH.展开更多
Based on the recent oil and gas discoveries and geological understandings on the ultra-deep strata of sedimentary basins, the formation and occurrence of hydrocarbons in the ultra-deep strata were investigated with re...Based on the recent oil and gas discoveries and geological understandings on the ultra-deep strata of sedimentary basins, the formation and occurrence of hydrocarbons in the ultra-deep strata were investigated with respect to the processes of basin formation, hydrocarbon generation, reservoir formation and hydrocarbon accumulation, and key issues in ultra-deep oil and gas exploration were discussed. The ultra-deep strata in China underwent two extensional-convergent cycles in the Meso-Neoproterozoic Era and the Early Paleozoic Era respectively, with the tectonic-sedimentary differentiation producing the spatially adjacent source-reservoir assemblages. There are diverse large-scale carbonate reservoirs such as mound-beach, dolomite, karst fracture-vug, fractured karst and faulted zone, as well as over-pressured clastic rock and fractured bedrock reservoirs. Hydrocarbons were accumulated in multiple stages, accompanied by adjusting and finalizing in the late stage. The distribution of hydrocarbons is controlled by high-energy beach zone, regional unconformity, paleo-high and large-scale fault zone. The ultra-deep strata endow oil and gas resources as 33% of the remaining total resources, suggesting an important successive domain for hydrocarbon development in China. The large-scale pool-forming geologic units and giant hydrocarbon enrichment zones in ultra-deep strata are key and promising prospects for delivering successive discoveries. The geological conditions and enrichment zone prediction of ultra-deep oil and gas are key issues of petroleum geology.展开更多
To meet the requirements of marine natural gas hydrate exploitation,it is necessary to improve the penetration of completion sand control string in the large curvature borehole.In this study,large curvature test wells...To meet the requirements of marine natural gas hydrate exploitation,it is necessary to improve the penetration of completion sand control string in the large curvature borehole.In this study,large curvature test wells were selected to carry out the running test of sand control string with pre-packed screen.Meanwhile,the running simulation was performed by using the Landmark software.The results show that the sand control packer and screen can be run smoothly in the wellbore with a dogleg angle of more than 20°/30 m and keep the structure stable.Additionally,the comprehensive friction coefficient is 0.4,under which and the simulation shows that the sand control string for hydrate exploitation can be run smoothly.These findings have important guiding significance for running the completion sand control string in natural gas hydrate exploitation.展开更多
To deal with the exploitation difficulties of gas fields in Northeast Sichuan with deep marine strata, after researching the relative standards domestic and abroad extensively, summarizing and promoting the successful...To deal with the exploitation difficulties of gas fields in Northeast Sichuan with deep marine strata, after researching the relative standards domestic and abroad extensively, summarizing and promoting the successful experiences and failure lessons of project construction technology application scientifically, Sinopec has established an integrated technical standard system for the exploration and development of ultra deep and high sour gas fields. The system consists of 51 enterprise standards and covers 7 professions including geophysical prospecting, drilling, drilling log, well logging, gas formation test and production, sour gas gathering and transferring system, and HSE (health,safety,environment). It guides and guarantees the safe, high-quality and high-efficiency project construction effectively by means of enhancing the engineering design criterion, recommending the data processing and interpretation methods, identifying the requirements of operation and field inspection and standardizing the application of technical equipments.展开更多
文摘COVID-19 pandemic restrictions limited all social activities to curtail the spread of the virus.The foremost and most prime sector among those affected were schools,colleges,and universities.The education system of entire nations had shifted to online education during this time.Many shortcomings of Learning Management Systems(LMSs)were detected to support education in an online mode that spawned the research in Artificial Intelligence(AI)based tools that are being developed by the research community to improve the effectiveness of LMSs.This paper presents a detailed survey of the different enhancements to LMSs,which are led by key advances in the area of AI to enhance the real-time and non-real-time user experience.The AI-based enhancements proposed to the LMSs start from the Application layer and Presentation layer in the form of flipped classroom models for the efficient learning environment and appropriately designed UI/UX for efficient utilization of LMS utilities and resources,including AI-based chatbots.Session layer enhancements are also required,such as AI-based online proctoring and user authentication using Biometrics.These extend to the Transport layer to support real-time and rate adaptive encrypted video transmission for user security/privacy and satisfactory working of AI-algorithms.It also needs the support of the Networking layer for IP-based geolocation features,the Virtual Private Network(VPN)feature,and the support of Software-Defined Networks(SDN)for optimum Quality of Service(QoS).Finally,in addition to these,non-real-time user experience is enhanced by other AI-based enhancements such as Plagiarism detection algorithms and Data Analytics.
基金funded by the National Key Research and Development Program of China (2019YFA0708504)the National Science Foundation of China (42090025)+1 种基金the National Postdoctoral Researcher Funding Program (GZB20240009)the American Association of Petroleum Geologists Foundation for the year 2023
文摘In recent years,natural hydrogen has been discovered in various geological environments both domestically and internationally,which has sparked a global interest among geologists and led to a surge in the exploration of hydrogen gas(Klein et al.,2019;Prinzhofer et al.,2019;Moretti and Webber,2021;Scott,2021;Bezruchko,2022).However,there is a lack of research on the occurrence state of natural hydrogen gas,which hinders a deeper understanding of its behavior in underground storage and migration.
基金jointly supported by the National Natural Science Foundation of China(42376222,U22A20581,and 42076069)Key Research and Development Program of Hainan Province(ZDYF2024GXJS002)China Geological Survey(DD20230402)。
文摘A detailed understanding of the distribution and potential of natural gas hydrate(NGHs)resources is crucial to fostering the industrialization of those resources in the South China Sea,where NGHs are abundant.In this study,this study analyzed the applicability of resource evaluation methods,including the volumetric,genesis,and analogy methods,and estimated NGHs resource potential in the South China Sea by using scientific resource evaluation methods based on the factors controlling the geological accumulation and the reservoir characteristics of NGHs.Furthermore,this study compared the evaluation results of NGHs resource evaluations in representative worldwise sea areas via rational analysis.The results of this study are as follows:(1)The gas hydrate accumulation in the South China Sea is characterized by multiple sources of gas supply,multi-channel migration,and extensive accumulation,which are significantly different from those of oil and gas and other unconventional resources.(2)The evaluation of gas hydrate resources in the South China Sea is a highly targeted,stratified,and multidisciplinary evaluation of geological resources under the framework of a multi-type gas hydrate resource evaluation system and focuses on the comprehensive utilization of multi-source heterogeneous data.(3)Global NGHs resources is n×10^(15)m^(3),while the NGHs resources in the South China Sea are estimated to be 10^(13)m^(3),which is comparable to the abundance of typical marine NGHs deposits in other parts of the world.In the South China Sea,the NGHs resources have a broad prospect and provide a substantial resource base for production tests and industrialization of NGHs.
基金This study was financially supported by the National Natural Science Foundation of China(U19B6003)Frontier Project of Chinese Academy of Sciences(XDA14010201)National Key Natural Science Foundation of China(91755211).
文摘Reconstructing paleoenvironments has long been considered a vital component for understanding the development and evolution of carbonate reservoirs.The Middle Ordovician Period is considered the archetypical greenhouse interval,and also a critical period in biological evolution.The Middle Darriwilian isotope carbon excursion has been observed in many areas of the world and may be related to the biological explosions caused by decreases in the temperature.The thick carbonate rocks in the fifth member of the Middle Ordovician Majiagou Formation in the Dingbei area of the Ordos Basin were chosen as an example,based on the concentration of major,trace and rare earth elements as well as C,O and Sr isotopic analyses,the paleoenvironment was reconstructed.And its impact on natural gas exploration was analyzed.The results show that the seawater paleotemperature was 29℃,suboxicanoxic paleoredox conditions were observed,and the seawater paleosalinity was high.A large number of plankton in the biological explosion caused a rapid increase in the total organic carbon in carbonate rocks,which provided natural gas as supplemental source rocks.Affected by early meteoric water,the dissolution of gypsum laid the foundation for high-quality reservoirs,and the residual gypsum also further preserved natural gas.This study provides new data for the paleoenvironment and a theoretical basis for further natural gas exploration.
基金This research was jointly supported by the National Key R&D Program of China(2021YFC2800801)the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(GML2019ZD0501)+3 种基金the Guangzhou Basic and Applied Basic Foundation(202102020611)the project of Guangzhou Marine Geological Survey of the China Geology Survey(DD20221700)the Key-Area Research and Development Program of Guangdong Province(2020B1111030003)the High-tech Ship Research Project of the Ministry of Industry and Information Technology(CJ05N20).
文摘Conductor and suction anchor are the key equipment providing bearing capacity in the field of deep-water drilling or offshore engineering,which have the advantages of high operation efficiency and short construction period.In order to drill a horizontal well in the shallow hydrate reservoir in the deep water,the suction anchor wellhead assembly is employed to undertake the main vertical bearing capacity in the second round of hydrate trial production project,so as to reduce the conductor running depth and heighten the kick-off point position.However,the deformation law of the deep-water suction anchor wellhead assembly under the moving load of the riser is not clear,and it is necessary to understand the lateral bearing characteristics to guide the design of its structural scheme.Based on 3D solid finite element method,the solid finite element model of the suction anchor wellhead assembly is established.In the model,the seabed soil is divided into seven layers,the contact between the wellhead assembly and the soil is simulated,and the vertical load and bending moment are applied to the wellhead node to simulate the riser movement when working in the deep water.The lateral bearing stability of conventional wellhead assembly and suction anchor wellhead assembly under the influence of wellhead load is discussed.The analysis results show that the bending moment is the main factor affecting the lateral deformation of the wellhead string;the anti-bending performance from increasing the outer conductor diameter is better than that from increasing the conductor wall thickness;for the subsea wellhead,the suction anchor obviously improves the lateral bearing capacity and reduces the lateral deformation.The conduct of the suction anchor wellhead assembly still needs to be lowered to a certain depth that below the maximum disturbed depth to ensure the lateral bearing stability,Thus,a method for the minimum conductor running depth for the suction anchor wellhead assembly is developed.The field implementations show that compared with the first round of hydrate trial production project,the conductor running depth is increased by 9.42 m,and there is no risk of wellhead overturning during the trial production.The method for determining the minimum conductor running depth in this paper is feasible and will still play an important role in the subsequent hydrate exploration and development.
基金financially supported by the CAS consultation project“South China Sea Oil and Gas Comprehensive Development Strategy”(2019-ZW11-Z-035)the National Basic Research Program of China(2006CB202300,2011CB201100)the National HighTech R&D(863)Program of China(2013AA092600)。
文摘As an efficient clean energy,natural gas hydrate(NGH)has become a hot topic in recent researches.Since1990 s,China has made great achievements and progress in NGH exploration in the South China Sea(SCS),including determination of the favorable distribution areas and favorable strata thickness,identification of the dual source for accumulation,evaluation of the prospective gas contents,verification of the widespread existence,and confirmation of the technical recoverability of NGH resources.However,there are three major challenges in the NGH studies.First,all the 24 national key and major projects in the SCS focused on trial production engineering and geological engineering in the past 20 years,while 8 of the 10 international NGH research projects focused on resource potential.Second,resource evaluation methods are outdated and some parameter selection are subjective.Third,the existing resource evaluation results are low-level with a great uncertainty,and cannot be used to guide NGH exploration and production or strategic research.To improve the evaluation of NGH resources in the SCS,future researches should focus on four aspects:(1)improve the research on the criterion of the objective existence of NGH and the method of prediction and evaluation;(2)apply new theories and methods from the global NGH research;(3)boost the research on the difference and correlation of the conditions of hydrocarbon migration and accumulation in different basins;(4)innovate the theory and method of NGH resource potential evaluation.
文摘Small celestial body exploration is of great significance to deep space activities. The dynamics and control of orbits around small celestial bodies is of top priority in the exploration research. It includes the modeling of dynamics environment and the orbital dynamics mechanism. This paper introduced state-ofthe-art researches, major challenges, and future trends in this field. Three topics are mainly discussed: the gravitational field modeling of irregular-shaped small celestial bodies, natural orbital dynamics and control, and controlled orbital dynamics. Finally, constructive suggestions are made for China’s future space exploration missions.
基金jointly supported by the National Natural Science Foundation of China (42106052)Shandong Provincial Natural Science Foundation (ZR2020QD070)the project of China Geological Survey (DD20190221)。
文摘Large amounts of gas hydrate are distributed in the northern slope of the South China Sea,which is a potential threat of methane leakage.Aerobic methane oxidation by methanotrophs,significant methane biotransformation that occurs in sediment surface and water column,can effectively reduce atmospheric emission of hydrate-decomposed methane.To identify active aerobic methanotrophs and their methane oxidation potential in sediments from the Shenhu Area in the South China Sea,multi-day enrichment incubations were conducted in this study.The results show that the methane oxidation rates in the studied sediments were 2.03‒2.36μmol/gdw/d,which were higher than those obtained by sediment incubations from other areas in marine ecosystems.Thus the authors suspect that the methane oxidation potential of methanotrophs was relatively higher in sediments from the Shenhu Area.After the incubations family Methylococcaea(type I methanotrophs)mainly consisted of genus Methylobacter and Methylococcaea_Other were predominant with an increased proportion of 70.3%,whereas Methylocaldum decreased simultaneously in the incubated sediments.Collectively,this study may help to gain a better understanding of the methane biotransformation in the Shenhu Area.
基金supported by the Guangdong Province Marine Economic Development(Six Major Marine Industries)Special Fund Project([2021]56)the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(GML2019ZD0105)+1 种基金the Guangzhou Science and Technology Project(202201011463)project of the China Geological Survey(DD20211350).
文摘In this work,the authors monitored the formation and dissociation process of methane hydrate in four different rock core samples through nuclear magnetic resonance(NMR)relaxation time(T_(2))and 2D imaging measurement.The result shows that the intensity of T_(2) spectra and magnetic resonance imaging(MRI)signals gradually decreases in the hydrate formation process,and at the same time,the T_(2) spectra move toward the left domain as the growth of hydrate in the pores of the sample accelerates the decay rate.The hydrate grows and dissociates preferentially in the purer sandstone samples with larger pore size and higher porosity.Significantly,for the sample with lower porosity and higher argillaceous content,the intensity of the T_(2) spectra also shows a trend of a great decrease in the hydrate formation process,which means that high-saturation gas hydrate can also be formed in the sample with higher argillaceous content.The changes in MRI of the sample in the process show that the formation and dissociation of methane hydrate can reshape the distribution of water in the pores.
基金Supported by the PetroChina Special S&T Project(2016E-0502)National Natural Science Foundation of China(41772099,41872116).
文摘Based on field outcrop investigation,interpretation and analysis of drilling and seismic data,and consulting on a large number of previous research results,the characteristics of ancient marine hydrocarbon source rocks,favorable reservoir facies belts,hydrocarbon migration direction and reservoir-forming law in the Ordos Basin have been studied from the viewpoints of North China Craton breakup and Qilian-Qinling oceanic basin opening and closing.Four main results are obtained:(1)Controlled by deep-water shelf-rift,there are three suites of source rocks in the Ordos Basin and its periphery:Mesoproterozoic,Lower Cambrian and Middle-Upper Ordovician.(2)Controlled by littoral environment,paleo-uplift and platform margin,four types of reservoirs are developed in the area:Mesoproterozoic-Lower Cambrian littoral shallow sea quartz sandstone,Middle-Upper Cambrian–Ordovician weathering crust and dolomitized reservoir,and Ordovician L-shape platform margin reef and beach bodies.(3)Reservoir-forming assemblages vary greatly in the study area,with"upper generation and lower storage"as the main pattern in the platform,followed by"self-generation and self-storage".There are both"upper generation and lower storage"and"self-generation and self-storage"in the platform margin zone.In addition,in the case of communication between deep-large faults and the Changchengian system paleo-rift trough,there may also exist a"lower generation and upper reservoir"combination between the platform and the margin.(4)There are four new exploration fields including Qingyang paleo-uplift pre-Carboniferous weathering crust,L-shape platform margin zone in southwestern margin of the basin,Ordovician subsalt assemblage in central and eastern parts of the basin,and Mesoproterozoic–Cambrian.Among them,pre-Carboniferous weathering crust and L-shape platform margin facies zone are more realistic replacement areas,and Ordovician subsalt assemblage and the Proterozoic-Cambrian have certain potential and are worth exploring.
基金funded by the projects initiated by the China Geological Survey(DD20221794 and DD20190414).
文摘Global energy structure is experiencing the third transition from fossil energy to non-fossil energy,to solve future energy problems,cope with climate change,and achieve net-zero emissions targets by 2050.Hydrogen is considered to be the most potential clean energy in this century under the background of carbon neutrality.At present,the industrial methods for producing hydrogen are mainly by steam-hydrocarbon(such as coal and natural gas)reforming and by electrolysis of water,while the exploration and development of natural hydrogen had just started.According to this literature review:(1)Natural hydrogen can be divided into three categories,including free hydrogen,hydrogen in inclusions and dissolved hydrogen;(2)natural hydrogen could be mainly from abiotic origins such as by deep-seated hydrogen generation,water-rock reaction or water radiolysis;(3)natural hydrogen is widely distributed and presents great potential,and the potential natural hydrogen sources excluding deep source of hydrogen is about(254±91)×10^(9) m^(3)/a according to a latest estimate;(4)at present,natural hydrogen has been mined in Mali,and the exploration and development of natural hydrogen has also been carried out in Australia,Brazil,the United States and some European countries,to find many favorable areas and test some technical methods for natural hydrogen exploration.Natural hydrogen is expected to be an important part of hydrogen energy production in the future energy pattern.Based on a thorough literature review,this study introduced the origin,classification,and global discovery of natural hydrogen,as well as summarized the current global status and discussed the possibility of natural hydrogen exploration and development,aiming to provide reference for the future natural hydrogen exploration and development.
基金funded by the National Key Research and Development Program of China(2017YFC0307600)the China Geological Survey Program(DD20190231).
文摘Gas hydrate is one kind of potential energy resources that is buried under deep seafloor or frozen areas.The first trial offshore production from the silty reservoir was conducted in the South China Sea by the China Geological Survey(CGS).During this test,there were many unique characteristics different from the sand reservoir,which was believed to be related to the clayed silt physical properties.In this paper,simulation experiments,facilities analysis,and theoretical calculation were used to confirm the hydrate structure,reservoir thermo-physical property,and bond water movement rule.And the behavior of how they affected production efficiency was analyzed.The results showed that:It was reasonable to use the structure I rather than structure II methane hydrate phase equilibrium data to make the production plan;the dissociation heat absorbed by hydrate was large enough to cause hydrate self-protection or reformation depend on the reservoir thermal transfer and gas supply;clayed silt got better thermal conductivity compared to coarse grain,but poor thermal convection especially with hydrate;clayed silt sediment was easy to bond water,but the irreducible water can be exchanged to free water under high production pressure,and the most obvious pressure range of water increment was 1.9–4.9 MPa.
基金Supported by the National Science and Technology Major Project(2017ZX5001)
文摘The Junggar Basin is rich in oil but lacks natural gas, which is inconsistent with its geological background of natural gas. Based on the analysis of main source kitchens, and the evaluation of geological setting and controlling factors of gas accumulation, it is proposed that three significant fields for gas exploration should be emphasized. The first field is the Carboniferous volcanic rocks. The Carboniferous residual sags and large-scale reservoirs were developed in three active continental margins, i.e., the southeastern, northeastern and northwestern active continental margins. Gas accumulation is controlled by the favorable reservoir-caprock combinations composed of volcanic rocks and their superimposed lacustrine mudstones in the Upper Wuerhe Formation. Dinan, Eastern and Zhongguai uplifts are three favorable directions for natural gas exploration. The second field is the Lower combinations in the southern margin of Junggar Basin. Rows of structural traps were developed in this area with ideal preservation conditions and space-time configuration for trap-source combinations. Sets of clastic reservoirs and overpressured mudstones formed perfect reservoir-caprock combinations which are the main exploration direction for Jurassic coal-type gas reservoirs in this area. The seven large structural traps in the middle-east section are recently the most significant targets. The last field is the Central Depression. Large hydrocarbon generating centers, i.e., Mahu, Fukang and Shawan sags, were developed in this area, their source rocks were deeply buried and at highly-mature stage. Thus the Central Depression is a favorable exploration direction for Permian high-over mature gas fields(reservoirs). Great attentions should be paid to two types of targets, the deeply–buried structures and structural-lithologic traps. Based on three main gas systems, gas exploration is suggested be strengthened within three fields and on three levels.
基金funded by the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(GML2019ZD0307)the gas hydrate program initiated by the China Geological Survey(DD20190218)the project of the National Natural Science Foundation of China(11872365).
文摘Natural gas hydrates(NGHs)are a new type of clean energy with great development potential.However,it is urgent to achieve safe and economical NGHs development and utilization.This study established a physical model of the study area using the FLAC^(3D) software based on the key parameters of the NGHs production test area in the South China Sea,including the depressurization method,and mechanical parameters of strata,NGHs occurrence characteristics,and the technological characteristics of horizontal wells.Moreover,this study explored the law of influences of the NGHs dissociation range on the stability of the overburden strata and the casing structure of a horizontal well.The results are as follows.With the dissociation of NGHs,the overburden strata of the NGHs dissociation zone subsided and formed funnelshaped zones and then gradually stabilized.However,the upper interface of the NGHs dissociation zone showed significant redistribution and discontinuity of stress.Specifically,distinct stress concentration and corresponding large deformation occurred in the build-up section of the horizontal well,which was thus prone to suffering shear failure.Moreover,apparent end effects occurred at the end of the horizontal well section and might cause the deformation and failure of the casing structure.Therefore,it is necessary to take measures in the build-up section and at the end of the horizontal section of the horizontal well to prevent damage and ensure the wellbore safety in the long-term NGHs exploitation.
基金jointly supported by the Key Area Research and Development Program of Guangdong Province(2020B1111030003)the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)(GML2019ZD0102)the Project of China Geological Survey (DD20221700).
文摘To obtain the characteristics of the gas hydrate reservoirs at GMGS3-W19,extensive geophysical logging data and cores were analyzed to assess the reservoir properties.Sediment porosities were estimated from density,neutron,and nuclear magnetic resonance(NMR)logs.Both the resistivity and NMR logs were used to calculate gas hydrate saturations,the Simandoux model was employed to eliminate the effects of high clay content determined based on the ECS and core data.The density porosity was closely in agreement with the core-derived porosity,and the neutron porosity was higher while the NMR porosity was lower than the density porosity of sediments without hydrates.The resistivity log has higher vertical resolution than the NMR log and thus is more favorable for assessing gas hydrate saturation with strong heterogeneity.For the gas hydrate reservoirs at GMGS3-W19,the porosity,gas hydrate saturation and free gas saturation was 52.7%,42.7%and 10%,on average,respectively.The various logs provide different methods for the comprehensive evaluation of hydrate reservoir,which supports the selection of candidate site for gas hydrate production testing.
基金This work was funded by the projects of the National Natural Science Foundation of China(91858208,42076069)the project of China Geological Survey(DD20190581)。
文摘To accurately identify the natural gas hydrates(NGH)in the sea area of the Makran Accretionary Prism,Pakistan,this paper presents the testing and analysis of major and trace elements in sediment samples taken from two stations(S2 and S3)in the area by the China Geological Survey.As shown by testing results,all major elements are slightly different in content between the two stations except SiO2 and CaO.This also applies to the trace elements that include Sr and Ba primarily and Cr,Ni and Zn secondarily.It can be concluded in this study that the tectonic setting of the Makran Accretionary Prism is dominated by oceanic island arc and that provenance of the Makran Accretionary Prism is dominated by felsic igneous provenance,which is at the initial weathering stage and mainly consists of granodiorite.Besides terrigenous detritus,there are sediments possibly originating from Makran-Bela Ophiolite from the northwestern part and Murray Ridge igneous rocks from the southeastern part.The V/Cr,Ni/Co,and V/(V+Ni)ratios indicate that sediments of the two stations are in an oxidation-suboxidation environment.However,the authors infer that the sedimentary environment of the sediments 3.0 m below the seafloor tends to be gradually transformed into a reduction environment by comparison with the Qiongdongnan Basin in the South China Sea where NGH has been discovered.The sediments in the Makran Accretionary Prism are rich in organic matter,with total organic carbon(TOC)content greater than 1%.According to comprehensive research,the organic matter in the sediments mainly originates from marine algae and has high TOC content,which is favorable for the formation of NGH.
基金Supported by the National Natural Science Foundation of China(U19B6003-01,42330810).
文摘Based on the recent oil and gas discoveries and geological understandings on the ultra-deep strata of sedimentary basins, the formation and occurrence of hydrocarbons in the ultra-deep strata were investigated with respect to the processes of basin formation, hydrocarbon generation, reservoir formation and hydrocarbon accumulation, and key issues in ultra-deep oil and gas exploration were discussed. The ultra-deep strata in China underwent two extensional-convergent cycles in the Meso-Neoproterozoic Era and the Early Paleozoic Era respectively, with the tectonic-sedimentary differentiation producing the spatially adjacent source-reservoir assemblages. There are diverse large-scale carbonate reservoirs such as mound-beach, dolomite, karst fracture-vug, fractured karst and faulted zone, as well as over-pressured clastic rock and fractured bedrock reservoirs. Hydrocarbons were accumulated in multiple stages, accompanied by adjusting and finalizing in the late stage. The distribution of hydrocarbons is controlled by high-energy beach zone, regional unconformity, paleo-high and large-scale fault zone. The ultra-deep strata endow oil and gas resources as 33% of the remaining total resources, suggesting an important successive domain for hydrocarbon development in China. The large-scale pool-forming geologic units and giant hydrocarbon enrichment zones in ultra-deep strata are key and promising prospects for delivering successive discoveries. The geological conditions and enrichment zone prediction of ultra-deep oil and gas are key issues of petroleum geology.
基金supported jointly by one of the major projects of Basic and Applied Basic Research in Guangdong Province“Key Basic Theory Research for Natural Gas Hydrate Trial Production in Shenhu Pilot Test Area”(2020B0301030003)the project from Southern Marine Science&Engineering Guangdong Laboratory Guangzhou City“Research on New Closed Circulation Drilling Technology without Riser”(GML2019ZD0501)the special project for hydrate from China Geological Survey“Trial Production Implementation for Natural Gas Hydrate in Shenhu Pilot Test Area”(DD20190226)。
文摘To meet the requirements of marine natural gas hydrate exploitation,it is necessary to improve the penetration of completion sand control string in the large curvature borehole.In this study,large curvature test wells were selected to carry out the running test of sand control string with pre-packed screen.Meanwhile,the running simulation was performed by using the Landmark software.The results show that the sand control packer and screen can be run smoothly in the wellbore with a dogleg angle of more than 20°/30 m and keep the structure stable.Additionally,the comprehensive friction coefficient is 0.4,under which and the simulation shows that the sand control string for hydrate exploitation can be run smoothly.These findings have important guiding significance for running the completion sand control string in natural gas hydrate exploitation.
文摘To deal with the exploitation difficulties of gas fields in Northeast Sichuan with deep marine strata, after researching the relative standards domestic and abroad extensively, summarizing and promoting the successful experiences and failure lessons of project construction technology application scientifically, Sinopec has established an integrated technical standard system for the exploration and development of ultra deep and high sour gas fields. The system consists of 51 enterprise standards and covers 7 professions including geophysical prospecting, drilling, drilling log, well logging, gas formation test and production, sour gas gathering and transferring system, and HSE (health,safety,environment). It guides and guarantees the safe, high-quality and high-efficiency project construction effectively by means of enhancing the engineering design criterion, recommending the data processing and interpretation methods, identifying the requirements of operation and field inspection and standardizing the application of technical equipments.