Combustible gases in coal mines are composed of methane, hydrogen, some multi-carbon alkane gases and other gases. Based on a numerical calculation, the explosion limits of combustible gases were studied, showing that...Combustible gases in coal mines are composed of methane, hydrogen, some multi-carbon alkane gases and other gases. Based on a numerical calculation, the explosion limits of combustible gases were studied, showing that these limits are related to the concentrations of different components in the mixture. With an increase of C4H10 and C6H14, the Lower ExplosionLimit (LEL) and Upper Explosion-Limit (UEL) of a combustible gas mixture will decrease clearly. For every 0.1% increase in C4H10 and C6H14, the LEL decreases by about 0.19% and the UEL by about 0.3%. The results also prove that, by increasing the amount of H2, the UEL of a combustible gas mixture will increase considerably. If the level of HE increases by 0.1%, the UEL will increase by about 0.3%. However, H2 has only a small effect on the LEL of the combustible gas mixture. Our study provides a theoretical foundation for judging the explosion risk of an explosive gas mixture in mines.展开更多
In order to reduce the number of accidents due to explosions of flammable gases in the goaf of coalmines,the conditions for explosion of flammable gases and their explosion limits,affected to a considerable extent by ...In order to reduce the number of accidents due to explosions of flammable gases in the goaf of coalmines,the conditions for explosion of flammable gases and their explosion limits,affected to a considerable extent by CO2,are explored.With the use of our experimental equipment suitable for the study of explosion of polybasic explosive gas mixtures,we investigated the effect of CH4/H2=10/1 and CH4/C2H4=10/1 gases mixed with CO2 on their explosion limits.The results indicate that after adding CO2,the explosion limit of the CH4/H2(or C2H4) =10/1 gas mixtures decreased markedly with increasing amounts of CO2.When the amount of CO2 exceeded 25%,the CH4/C2H4=10/1 flammable gas mixture did not lead to explosions.Similar results were obtained when the amount of CO2 exceeded 23% in the CH4/H2=10/1 flammable gas mixture.We also compared the explosion limits and the explosion suppression effect of N2 or CO2 on the explosion limits of the CH4+CO and CH4+C2H4 dual explosive gas mixtures.Along with the increases in the amounts of CO2 or N2,the area of the explosion limits of gas mixtures decreased.Under the same conditions,the explosion suppression effect of CO2 was greater than that of N2.CO2 has clearly the better suppression effect on the explosion of flammable gases in goafs.展开更多
In this study, we analyze factors affecting the explosion limits of flammable refrigerants. We conclude that any method used for measuring flammable refrigerant explosion limits has its conditional restrictions. Flamm...In this study, we analyze factors affecting the explosion limits of flammable refrigerants. We conclude that any method used for measuring flammable refrigerant explosion limits has its conditional restrictions. Flammable refrigerants in the atmosphere can also explode under certain conditions, when the concentration is approaching the explosion limits. An experimental study on the explosion limits of six kinds of flammable refrigerants is carried out with a mixture of refrigerant and combustible refrigerant, which has a similar effect to a flame retardant. An experimental apparatus was designed to test the explosion limits of mixtures made from three different nonflammable refrigerants and six different flammable refrigerants. Two practical models were developed to estimate the critical concentration for inhibiting explosion of refrigerant mixtures: one was made up of two flammable components with one nonflammable component, and the second was made up of one flammable component with two nonflammable components.展开更多
The explosion characteristics of M15 methanol-gasoline mixture was experimental test by using FRTA explosion limit instrument.The effect of temperature on the explosion area of the sample was studied.The results show ...The explosion characteristics of M15 methanol-gasoline mixture was experimental test by using FRTA explosion limit instrument.The effect of temperature on the explosion area of the sample was studied.The results show that the lower explosion limit of M15 methanol-gasoline mixture is 1.716%and the upper explosion limit is 11.451%at the initial temperature of 80℃.The lower explosion limit of M15 methanol-gasoline is in the range of 1.711%-1.760%with the initial temperature from 25℃to 100℃,and the upper explosion limit of the sample changes between 11.253%and 11.451%.Considering experimental error and precision,it can be approximated that the temperature has little influence on the explosion area of M15 methanol-gasoline mixture.展开更多
The combustion and explosion characteristics of lithium-ion battery vent gas is a key factor in determining the fire hazard of lithium-ion batteries.Investigating the combustion and explosion hazards of lithium-ion ba...The combustion and explosion characteristics of lithium-ion battery vent gas is a key factor in determining the fire hazard of lithium-ion batteries.Investigating the combustion and explosion hazards of lithium-ion batteries vent gas can provide guidance for rescue and protection in explosion accidents in energy storage stations and new energy vehicles,thereby promoting the application and development of lithium-ion batteries.Based on this understanding and combined with previous research on gas production from lithium-ion batteries,this article conducted a study on the combustion and explosion risks of vent gas from thermal runaway of 18650 LFP batteries with different states of charge(SOCs).The explosion limit of mixed gases affected by carbon dioxide inert gas is calculated through the“elimination”method,and the Chemkin-Pro software is used to numerically simulate the laminar flame speed and adiabatic flame temperature of the battery vent gas.And the concentration of free radicals and sensitivity coefficients of major elementary reactions in the system are analyzed to comprehensively evaluate the combustion explosion hazard of battery vent gas.The study found that the 100%SOC battery has the lowest explosion limit of the vent gas.The inhibitory elementary reaction sensitivity coefficient in the reaction system is lower and the concentration of free radicals is higher.Therefore,it has the maximum laminar flame speed and adiabatic flame temperature.The combustion and explosion hazard of battery vent gas increases with the increase of SOC,and the risk of explosion is the greatest and most harmful when SOC reaches 100%.However,the related hazards decrease to varying degrees with overcharging of the battery.This article provides a feasible method for analyzing the combustion mechanism of vent gas from lithium-ion batteries,revealing the impact of SOC on the hazardousness of battery vent gas.It provides references for the safety of storage and transportation of lithium-ion batteries,safety protection of energy storage stations,and the selection of related fire extinguishing agents.展开更多
The explosion characteristics of chlorine dioxide gas have been studied for the first time in a cylindrical exploder with a shell capacity of 201. The experimental results have indicated that the lower concentration l...The explosion characteristics of chlorine dioxide gas have been studied for the first time in a cylindrical exploder with a shell capacity of 201. The experimental results have indicated that the lower concentration limit for the explosive decomposition of chlorine dioxide gas is 9.5% ([ClO2]/[air]), whereas there is no corresponding upper concentration limit. The maximum pressure of explosion relative to the initial pressure was measured as 0.024 MPa at 10% ClO2 and 0.641 MPa at 90% ClO2. The induction time (the time from the moment of sparking to explosion) at 10% ClO2 was 2195 ms, but at 90% ClO2 the induction time was just 8 ms. The explosion reaction mechanism of ClO2 is of a degenerate chain-branching type involving the formation of a stable intermediate (Cl2O3), from which the chain branching occurs.展开更多
Abstract: In order to study the flammability and explosion property of gases during the propane oxidation to acrylic acid process, the explosion limits and the safety oxygen content of gases at the recycle gas compre...Abstract: In order to study the flammability and explosion property of gases during the propane oxidation to acrylic acid process, the explosion limits and the safety oxygen content of gases at the recycle gas compressor outlet, the reactor inlet, and the reactor outlet were theoretically calculated and experimentally tested. Finally, the inert limit was also determined. It showed that gases at the recycle gas compressor outlet and the reactor outlet were nonflammable based on three indicators: the explosion limits, the safety oxygen content and the inert limit. The C3H6 and O2 contents were higher at the reactor inlet, which made the mixed gases easily ignitable. However, the large amount of inert gases suppressed the possibility of explo- sion effectively. As a consequence, no explosion phenomenon would happen in all three locations. But gases at the reactor inlet are most dangerous, where more supervision on the concentration of gases and more strict control on the temperature and pressure should be implemented. Besides this, open flame, hot surfaces and other sources of ignition are prohibited in working spaces. The experimental results can be applied to similar process for oxidation of propane.展开更多
The explosive gases CO and C2H4, released mainly flammable gases during the process of coal self-ignition, are of the most important ingredients of the multi-component gases in goal areas, along with CH4. We have dete...The explosive gases CO and C2H4, released mainly flammable gases during the process of coal self-ignition, are of the most important ingredients of the multi-component gases in goal areas, along with CH4. We have determined some of the parame- ters of explosive properties of the one-component gases CH4, CO and C2H4 using an explosive trial device of polybasic explosive gas mixtures and emphasized particularly the effect on the limits of explosive concentration of the binary explosive mixed gases CH4+CO, CH4+C2H4, as a function of the amount of CO, C2H4 and inert flame resisting gases (N2, CO2). The experimental results show that the effect of inert gases on the explosive limits of mixed gases, given the property of explosive gas, is obvious: the inert gases (N2, CO2) possess some inhibitory effects on the explosion of the multi-component explosive gas mixtures. The results will provide some experimental support to suppress the occurrence of the gas explosions in goaf areas and provide some directions for designing explosion-proof electric equipment and fire arresters.展开更多
With the introduction of various carbon reduction policies around the world,hydrogen energy,as a kind of clean energy with zero carbon emission,has attracted much attention.The safe and economical transportation of hy...With the introduction of various carbon reduction policies around the world,hydrogen energy,as a kind of clean energy with zero carbon emission,has attracted much attention.The safe and economical transportation of hydrogen is of great significance to the development of hydrogen energy industries.Utilizing natural gas pipelines to transport hydrogen is considered to be an efficient and economical way.However,hydrogen has a higher risk of leakage due to its strong diffusion capacity and lower explosive limit than conventional natural gas.Therefore,it is of great significance to study the leakage and diffusion law of hydrogen-enriched natural gas(HENG)pipelines for the safe transportation of hydrogen energy.In this study,the leakage and diffusion characteristics of urban buried HENG pipelines are investigated numerically,and the dangerous degree of leakage is analyzed based on the time and area when the gas concentration reaches the lower explosive limit.The influences of hydrogen blending ratio(HBR),operating pressure,leakage hole size and direction,as well as soil type on the leakage and diffusion law of HENG are analyzed.Results show that the hydrogen mixing is not the key factor in increasing the degree of risk after gas leakage for urban buried HENG pipelines.When the HBR is 5%,10%,15% and 20%,the corresponding first dangerous time is 1053,1041,1019 and 998 s,respectively.Thiswork is expected to provide a valuable reference for the safe operation and risk prevention of HENG pipelines in the future.展开更多
Studied on multi-component combustible gas,methane mainly,explosion char- acteristics of high gas mine,obtained the rules of gas explosive limit that influenced by environment temperature,pressure,concentration of oxy...Studied on multi-component combustible gas,methane mainly,explosion char- acteristics of high gas mine,obtained the rules of gas explosive limit that influenced by environment temperature,pressure,concentration of oxygen,other combustible gas,coal dust,energy of fire source,and the inert gas,proposed a new method of divide gas explo- sive triangle partition,and gave new partition linear equations.The gas explosive triangle and its new partition has important directive significance in distinguishing if the fire area has a gas explosion when sealing or opening fire area,or fire extinguishing in sealed fire area,and judging if there will be a gas explosion or other trend while fire extinguishing with inert gas.展开更多
The inhibiting effect of AI(OH)3 and Mg(OH)2 dust on explosion of methane-air mixtures was investigated by means of explosion parameter tests in a 20-liter closed vessel. The influences of varying methane concentr...The inhibiting effect of AI(OH)3 and Mg(OH)2 dust on explosion of methane-air mixtures was investigated by means of explosion parameter tests in a 20-liter closed vessel. The influences of varying methane concentration and dust concentration on explosion parameters were characterized based on the experimental data to determine the maximum explosion pressure, maximum rate of pressure rise, lower explosion limits and upper explosion limits. The inhibiting mechanisms of these kinds of dust were analyzed as well. The investigations indicate that AI(OH)3 and Mg(OH)2 dust can be used as inhibitors to prevent meth- ane explosion, however, their inhibiting effects are less than those of inert gas such as N2 and CO2 in that their dust can weaken the methane explosion but cannot totally eliminate it. The tests show that all of the explosion parameters with dust additives are strongly dependent on methane/air ratio and dust concentration, and AI(OH)3 dust has better performance than Mg(OH)2 dust in inhibiting methane explosion. The average percentage decreases of maximum explosion pressure and maximum rate of pressure rise with AI(OH)3 dust are 11.08% and 66.15%, respectively. Experiments also showed that there is a special phe- nomenon when methane explosion is inhibited by AI(OH)3 and Mg(OH)2 dust, in which is that during the process of explosion the maximum explosion pressure value first decreases then increases as dust concentration increases. The best dust concentrations to inhibit the explosion are 250 g/m3 with methane/air ratio at 9.5%, and 200 g/m3 with methane/air ratio at 7%. It is suggested that water vapor produced by the thermal decomposition of metal hydroxides makes the particles of descending dust combine, resulting in a decrease of the real dust concentration in the vessel. Water vapor also is the major cause of another phenomenon that the LEL curve and the UEL curve never meet with the increase of gas concentration.展开更多
The influence of explosive charge thickness on the quality of explosive welding of dissimilar metals was investigated.The lower limit law should be followed in the course of explosive welding.Three welding experiments...The influence of explosive charge thickness on the quality of explosive welding of dissimilar metals was investigated.The lower limit law should be followed in the course of explosive welding.Three welding experiments of stainless steel(410S)and steel(Q345R)were carried out in three different kinds of explosive charge thicknesses,namely 15,25and 35mm.Interfaces of morphology and mechanical properties of three samples were observed and tested.It was found that micro and small wavy bonding is mainly formed for charge thickness of 15mm whose strength is the highest with minor deformation and few defects in the interface;small and middle wavy bonding are mainly formed for charge thickness of 25 mm whose strength is comparatively mediocre;big wavy bonding is mainly formed for charge thickness of 35 mm whose strength is the lowest.The cause of high bonding strength of the micro and small wavy interface was analyzed and verified on the basis of the results of Electron Probe Micro-Analyzer(EPMA)tests of three selected samples.展开更多
基金Projects 706029 supported by the Cultivation Fund of the Key Scientific and Technical Innovation Project of Ministry of Education of China2007AA04Z332 by the National High Technology Research and Development Program of China
文摘Combustible gases in coal mines are composed of methane, hydrogen, some multi-carbon alkane gases and other gases. Based on a numerical calculation, the explosion limits of combustible gases were studied, showing that these limits are related to the concentrations of different components in the mixture. With an increase of C4H10 and C6H14, the Lower ExplosionLimit (LEL) and Upper Explosion-Limit (UEL) of a combustible gas mixture will decrease clearly. For every 0.1% increase in C4H10 and C6H14, the LEL decreases by about 0.19% and the UEL by about 0.3%. The results also prove that, by increasing the amount of H2, the UEL of a combustible gas mixture will increase considerably. If the level of HE increases by 0.1%, the UEL will increase by about 0.3%. However, H2 has only a small effect on the LEL of the combustible gas mixture. Our study provides a theoretical foundation for judging the explosion risk of an explosive gas mixture in mines.
基金provided by the National Natural Science Foundation of China (No.50874088)the Project of Creative Team by the Ministry of Education of China (No.IRT0856)+1 种基金the Excellent Talent Project of the New Century supported by the Ministry of Education of China (No.NECT050874)the Natural Science Foundation of the Education Department of Shaanxi Province (No.08JK351)
文摘In order to reduce the number of accidents due to explosions of flammable gases in the goaf of coalmines,the conditions for explosion of flammable gases and their explosion limits,affected to a considerable extent by CO2,are explored.With the use of our experimental equipment suitable for the study of explosion of polybasic explosive gas mixtures,we investigated the effect of CH4/H2=10/1 and CH4/C2H4=10/1 gases mixed with CO2 on their explosion limits.The results indicate that after adding CO2,the explosion limit of the CH4/H2(or C2H4) =10/1 gas mixtures decreased markedly with increasing amounts of CO2.When the amount of CO2 exceeded 25%,the CH4/C2H4=10/1 flammable gas mixture did not lead to explosions.Similar results were obtained when the amount of CO2 exceeded 23% in the CH4/H2=10/1 flammable gas mixture.We also compared the explosion limits and the explosion suppression effect of N2 or CO2 on the explosion limits of the CH4+CO and CH4+C2H4 dual explosive gas mixtures.Along with the increases in the amounts of CO2 or N2,the area of the explosion limits of gas mixtures decreased.Under the same conditions,the explosion suppression effect of CO2 was greater than that of N2.CO2 has clearly the better suppression effect on the explosion of flammable gases in goafs.
文摘In this study, we analyze factors affecting the explosion limits of flammable refrigerants. We conclude that any method used for measuring flammable refrigerant explosion limits has its conditional restrictions. Flammable refrigerants in the atmosphere can also explode under certain conditions, when the concentration is approaching the explosion limits. An experimental study on the explosion limits of six kinds of flammable refrigerants is carried out with a mixture of refrigerant and combustible refrigerant, which has a similar effect to a flame retardant. An experimental apparatus was designed to test the explosion limits of mixtures made from three different nonflammable refrigerants and six different flammable refrigerants. Two practical models were developed to estimate the critical concentration for inhibiting explosion of refrigerant mixtures: one was made up of two flammable components with one nonflammable component, and the second was made up of one flammable component with two nonflammable components.
基金Key Research and Development(R&D)Projects of Shanxi Province(No.201903D121028)Special Foundation for Platform Base and Outstanding Talent of Shanxi Province(No.201705D211002)。
文摘The explosion characteristics of M15 methanol-gasoline mixture was experimental test by using FRTA explosion limit instrument.The effect of temperature on the explosion area of the sample was studied.The results show that the lower explosion limit of M15 methanol-gasoline mixture is 1.716%and the upper explosion limit is 11.451%at the initial temperature of 80℃.The lower explosion limit of M15 methanol-gasoline is in the range of 1.711%-1.760%with the initial temperature from 25℃to 100℃,and the upper explosion limit of the sample changes between 11.253%and 11.451%.Considering experimental error and precision,it can be approximated that the temperature has little influence on the explosion area of M15 methanol-gasoline mixture.
基金supported by the National Natural Science Foundation of China(52106284)the Natural Science Foundation of Hebei Province(B2021507001)support of Project to Promote Innovation in Doctoral Research at CPPU(BSKY202302).
文摘The combustion and explosion characteristics of lithium-ion battery vent gas is a key factor in determining the fire hazard of lithium-ion batteries.Investigating the combustion and explosion hazards of lithium-ion batteries vent gas can provide guidance for rescue and protection in explosion accidents in energy storage stations and new energy vehicles,thereby promoting the application and development of lithium-ion batteries.Based on this understanding and combined with previous research on gas production from lithium-ion batteries,this article conducted a study on the combustion and explosion risks of vent gas from thermal runaway of 18650 LFP batteries with different states of charge(SOCs).The explosion limit of mixed gases affected by carbon dioxide inert gas is calculated through the“elimination”method,and the Chemkin-Pro software is used to numerically simulate the laminar flame speed and adiabatic flame temperature of the battery vent gas.And the concentration of free radicals and sensitivity coefficients of major elementary reactions in the system are analyzed to comprehensively evaluate the combustion explosion hazard of battery vent gas.The study found that the 100%SOC battery has the lowest explosion limit of the vent gas.The inhibitory elementary reaction sensitivity coefficient in the reaction system is lower and the concentration of free radicals is higher.Therefore,it has the maximum laminar flame speed and adiabatic flame temperature.The combustion and explosion hazard of battery vent gas increases with the increase of SOC,and the risk of explosion is the greatest and most harmful when SOC reaches 100%.However,the related hazards decrease to varying degrees with overcharging of the battery.This article provides a feasible method for analyzing the combustion mechanism of vent gas from lithium-ion batteries,revealing the impact of SOC on the hazardousness of battery vent gas.It provides references for the safety of storage and transportation of lithium-ion batteries,safety protection of energy storage stations,and the selection of related fire extinguishing agents.
基金supported by the National Natural Science Foundation of China (No.50774068) and Shanxi Provincial Science and Technology Department,China.
文摘The explosion characteristics of chlorine dioxide gas have been studied for the first time in a cylindrical exploder with a shell capacity of 201. The experimental results have indicated that the lower concentration limit for the explosive decomposition of chlorine dioxide gas is 9.5% ([ClO2]/[air]), whereas there is no corresponding upper concentration limit. The maximum pressure of explosion relative to the initial pressure was measured as 0.024 MPa at 10% ClO2 and 0.641 MPa at 90% ClO2. The induction time (the time from the moment of sparking to explosion) at 10% ClO2 was 2195 ms, but at 90% ClO2 the induction time was just 8 ms. The explosion reaction mechanism of ClO2 is of a degenerate chain-branching type involving the formation of a stable intermediate (Cl2O3), from which the chain branching occurs.
基金financially supported by the National Science and Technology Support Program of China(2012BAK13B01)
文摘Abstract: In order to study the flammability and explosion property of gases during the propane oxidation to acrylic acid process, the explosion limits and the safety oxygen content of gases at the recycle gas compressor outlet, the reactor inlet, and the reactor outlet were theoretically calculated and experimentally tested. Finally, the inert limit was also determined. It showed that gases at the recycle gas compressor outlet and the reactor outlet were nonflammable based on three indicators: the explosion limits, the safety oxygen content and the inert limit. The C3H6 and O2 contents were higher at the reactor inlet, which made the mixed gases easily ignitable. However, the large amount of inert gases suppressed the possibility of explo- sion effectively. As a consequence, no explosion phenomenon would happen in all three locations. But gases at the reactor inlet are most dangerous, where more supervision on the concentration of gases and more strict control on the temperature and pressure should be implemented. Besides this, open flame, hot surfaces and other sources of ignition are prohibited in working spaces. The experimental results can be applied to similar process for oxidation of propane.
基金The financial supports from the National Natural Science Foundation of China (No.50874088)the Changjiang Scholars and Innovative Research Team in University (No.IRT0856)
文摘The explosive gases CO and C2H4, released mainly flammable gases during the process of coal self-ignition, are of the most important ingredients of the multi-component gases in goal areas, along with CH4. We have determined some of the parame- ters of explosive properties of the one-component gases CH4, CO and C2H4 using an explosive trial device of polybasic explosive gas mixtures and emphasized particularly the effect on the limits of explosive concentration of the binary explosive mixed gases CH4+CO, CH4+C2H4, as a function of the amount of CO, C2H4 and inert flame resisting gases (N2, CO2). The experimental results show that the effect of inert gases on the explosive limits of mixed gases, given the property of explosive gas, is obvious: the inert gases (N2, CO2) possess some inhibitory effects on the explosion of the multi-component explosive gas mixtures. The results will provide some experimental support to suppress the occurrence of the gas explosions in goaf areas and provide some directions for designing explosion-proof electric equipment and fire arresters.
基金supported by the National Key R&D Program of China (No.2021YFB4001602),the National Natural Science Foundation of China (No.51904031)the Award Cultivation Foundation from Beijing Institute of Petrochemical Technology (No.BIPTACF-002).
文摘With the introduction of various carbon reduction policies around the world,hydrogen energy,as a kind of clean energy with zero carbon emission,has attracted much attention.The safe and economical transportation of hydrogen is of great significance to the development of hydrogen energy industries.Utilizing natural gas pipelines to transport hydrogen is considered to be an efficient and economical way.However,hydrogen has a higher risk of leakage due to its strong diffusion capacity and lower explosive limit than conventional natural gas.Therefore,it is of great significance to study the leakage and diffusion law of hydrogen-enriched natural gas(HENG)pipelines for the safe transportation of hydrogen energy.In this study,the leakage and diffusion characteristics of urban buried HENG pipelines are investigated numerically,and the dangerous degree of leakage is analyzed based on the time and area when the gas concentration reaches the lower explosive limit.The influences of hydrogen blending ratio(HBR),operating pressure,leakage hole size and direction,as well as soil type on the leakage and diffusion law of HENG are analyzed.Results show that the hydrogen mixing is not the key factor in increasing the degree of risk after gas leakage for urban buried HENG pipelines.When the HBR is 5%,10%,15% and 20%,the corresponding first dangerous time is 1053,1041,1019 and 998 s,respectively.Thiswork is expected to provide a valuable reference for the safe operation and risk prevention of HENG pipelines in the future.
基金the National Natural Science Fund of China(50474010)the National"Eleventh Five-year Plan"Science and Technology Support Plan of China(2006BAK03B0503)+1 种基金the Fund of Education Department Liaoning Province(05L-174)the Fund of Education Department Liaoning Province(20060389)
文摘Studied on multi-component combustible gas,methane mainly,explosion char- acteristics of high gas mine,obtained the rules of gas explosive limit that influenced by environment temperature,pressure,concentration of oxygen,other combustible gas,coal dust,energy of fire source,and the inert gas,proposed a new method of divide gas explo- sive triangle partition,and gave new partition linear equations.The gas explosive triangle and its new partition has important directive significance in distinguishing if the fire area has a gas explosion when sealing or opening fire area,or fire extinguishing in sealed fire area,and judging if there will be a gas explosion or other trend while fire extinguishing with inert gas.
基金supported by the National Natural Science Foundation of China (Grant No. 50704025)
文摘The inhibiting effect of AI(OH)3 and Mg(OH)2 dust on explosion of methane-air mixtures was investigated by means of explosion parameter tests in a 20-liter closed vessel. The influences of varying methane concentration and dust concentration on explosion parameters were characterized based on the experimental data to determine the maximum explosion pressure, maximum rate of pressure rise, lower explosion limits and upper explosion limits. The inhibiting mechanisms of these kinds of dust were analyzed as well. The investigations indicate that AI(OH)3 and Mg(OH)2 dust can be used as inhibitors to prevent meth- ane explosion, however, their inhibiting effects are less than those of inert gas such as N2 and CO2 in that their dust can weaken the methane explosion but cannot totally eliminate it. The tests show that all of the explosion parameters with dust additives are strongly dependent on methane/air ratio and dust concentration, and AI(OH)3 dust has better performance than Mg(OH)2 dust in inhibiting methane explosion. The average percentage decreases of maximum explosion pressure and maximum rate of pressure rise with AI(OH)3 dust are 11.08% and 66.15%, respectively. Experiments also showed that there is a special phe- nomenon when methane explosion is inhibited by AI(OH)3 and Mg(OH)2 dust, in which is that during the process of explosion the maximum explosion pressure value first decreases then increases as dust concentration increases. The best dust concentrations to inhibit the explosion are 250 g/m3 with methane/air ratio at 9.5%, and 200 g/m3 with methane/air ratio at 7%. It is suggested that water vapor produced by the thermal decomposition of metal hydroxides makes the particles of descending dust combine, resulting in a decrease of the real dust concentration in the vessel. Water vapor also is the major cause of another phenomenon that the LEL curve and the UEL curve never meet with the increase of gas concentration.
基金supported by the National Natural Science Foundation of China(No.51541112)Special Fund Achievement Transformation Projects in Jiangsu(No.BA2012030)
文摘The influence of explosive charge thickness on the quality of explosive welding of dissimilar metals was investigated.The lower limit law should be followed in the course of explosive welding.Three welding experiments of stainless steel(410S)and steel(Q345R)were carried out in three different kinds of explosive charge thicknesses,namely 15,25and 35mm.Interfaces of morphology and mechanical properties of three samples were observed and tested.It was found that micro and small wavy bonding is mainly formed for charge thickness of 15mm whose strength is the highest with minor deformation and few defects in the interface;small and middle wavy bonding are mainly formed for charge thickness of 25 mm whose strength is comparatively mediocre;big wavy bonding is mainly formed for charge thickness of 35 mm whose strength is the lowest.The cause of high bonding strength of the micro and small wavy interface was analyzed and verified on the basis of the results of Electron Probe Micro-Analyzer(EPMA)tests of three selected samples.