期刊文献+
共找到1,374篇文章
< 1 2 69 >
每页显示 20 50 100
Analysis of explosion wave interactions and rock breaking effects during dual initiation
1
作者 Renshu Yang Jinjing Zuo +3 位作者 Liwei Ma Yong Zhao Zhen Liu Quanmin Xie 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第8期1788-1798,共11页
In blasting engineering, the location and number of detonation points, to a certain degree, regulate the propagation direction ofthe explosion stress wave and blasting effect. Herein, we examine the explosion wave fie... In blasting engineering, the location and number of detonation points, to a certain degree, regulate the propagation direction ofthe explosion stress wave and blasting effect. Herein, we examine the explosion wave field and rock breaking effect in terms of shockwave collision, stress change of the blast hole wall in the collision zone, and crack propagation in the collision zone. The produced shockwave on the collision surface has an intensity surpassing the sum of the intensities of the two colliding explosion shock waves. At the collisionlocation, the kinetic energy is transformed into potential energy with a reduction in particle velocity at the wave front and the wavefront pressure increases. The expansion form of the superposed shock wave is dumbbell-shaped, the shock wave velocity in the collisionarea is greater than the radial shock wave velocity, and the average propagation angle of the explosion shock waves is approximately 60°.Accordingly, a fitted relationship between blast hole wall stress and explosion wave propagation angle in the superposition area is plotted.Under the experimental conditions, the superimposed explosion wave stress of the blast hole wall is approximately 1.73 times the singleexplosionwave incident stress. The results of the model test and numerical simulations reveal that large-scale radial fracture cracks weregenerated on the blast hole wall in the superimposed area, and the width of the crack increased. The width of the large-scale radial fracturecracks formed by a strong impact is approximately 5% of the blast hole length. According to the characteristics of blast hole wallcompression, the mean peak pressures of the strongly superimposed area are approximately 1.48 and 1.84 times those of the weakly superimposedand nonsuperimposed areas, respectively. 展开更多
关键词 BLASTING shock wave collision high-speed schlieren system crack fracture characteristic explosion wave
下载PDF
Explosion damage effects of aviation kerosene storage tank under strong ignition
2
作者 Shixiang Song Cheng Wang +1 位作者 Boyang Qiao Gongtian Gu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第7期27-38,共12页
In order to study the blast damage effects of aviation kerosene storage tanks,the out-field explosion experiments of 8 m3fixed-roof tanks were carried out.The fragments,shock wave and fireball thermal radiation of the... In order to study the blast damage effects of aviation kerosene storage tanks,the out-field explosion experiments of 8 m3fixed-roof tanks were carried out.The fragments,shock wave and fireball thermal radiation of the tank in the presence of bottom oil,half oil and full oil,as well as empty tank,were investigated under internal explosion by various TNT charge contents(1.8 kg,3.5 kg and 6.2 kg).The results showed that the tank roof was the only fragment produced,and the damage forms could be divided into three types.The increase of TNT charge content and oil volume enlarged the deformation of the tank,while the hole ratio presented a trend of increase first and then decrease.The H_r,maxand V_(max)values positively increased as increasing the TNT charge content and oil volume(from empty to half oil),but decreased in full oil.The Pmaxvalues had a progressive increase with the increment of TNT charge content,but not the case with the increase in oil volumes.The development of fireball was divided into three stages:tank roof‘towed'flame,jet flow flame tumbling and rising,and jet flow flame extinguishing.The Dmaxand Hf,maxvalues both increased as increasing TNT charge content and oil volumes.The oscillation phenomenon of fireball temperature was observed in the cooling process.The average temperature of fireball surface was positively correlated with TNT charge content,and negatively correlated with oil volumes. 展开更多
关键词 Aviation kerosene Storage tank Internal explosion shock wave FIREBALL
下载PDF
Blast waveform tailoring using controlled venting in blast simulators and shock tubes
3
作者 Edward Chern Jinn Gan Alex Remennikov David Ritzel 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第7期14-26,共13页
A critical challenge of any blast simulation facility is in producing the widest possible pressure-impulse range for matching against equivalent high-explosive events.Shock tubes and blast simulators are often constra... A critical challenge of any blast simulation facility is in producing the widest possible pressure-impulse range for matching against equivalent high-explosive events.Shock tubes and blast simulators are often constrained with the lack of effective ways to control blast wave profiles and as a result have a limited performance range.Some wave shaping techniques employed in some facilities are reviewed but often necessitate extensive geometric modifications,inadvertently cause flow anomalies,and/or are only applicable under very specific configurations.This paper investigates controlled venting as an expedient way for waveforms to be tuned without requiring extensive modifications to the driver or existing geometry and could be widely applied by existing and future blast simulation and shock tube facilities.The use of controlled venting is demonstrated experimentally using the Advanced Blast Simulator(shock tube)at the Australian National Facility of Physical Blast Simulation and via numerical flow simulations with Computational Fluid Dynamics.Controlled venting is determined as an effective method for mitigating the impact of re-reflected waves within the blast simulator.This control method also allows for the adjustment of parameters such as tuning the peak overpressure,the positive phase duration,and modifying the magnitude of the negative phase and the secondary shock of the blast waves.This paper is concluded with an illustration of the potential expanded performance range of the Australian blast simulation facility when controlled venting for blast waveform tailoring as presented in this paper is applied. 展开更多
关键词 Advanced blast simulator shock wave propagation Far-field explosion Blast loads Blast waves Computational fluid dynamics
下载PDF
Experimental investigation on weak shock wave mitigation characteristics of flexible polyurethane foam and polyurea
4
作者 Shiyu Jia Cheng Wang +2 位作者 Wenlong Xu Dong Ma Fangfang Qi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期179-191,共13页
In recent years,explosion shock wave has been considered as a signature injury of the current military conflicts.Although strong shock wave is lethal to the human body,weak shock wave can cause many more lasting conse... In recent years,explosion shock wave has been considered as a signature injury of the current military conflicts.Although strong shock wave is lethal to the human body,weak shock wave can cause many more lasting consequences.To investigate the protection ability and characteristics of flexible materials and structures under weak shock wave loading,the blast wave produced by TNT explosive is loaded on the polyurethane foam with the density of 200.0 kg/m3(F-200)and 400.0 kg/m3(F-400),polyurea with the density of 1100.0 kg/m^(3)(P-1100)and structures composed of the two materials,which are intended for individual protection.Experimental results indicate that the shock wave is attenuated to weak pressure disturbance after interacting with the flexible materials which are not damaged.The shock wave protective capability of single-layer materials is dependent on their thickness,density and microscopic characteristics.The overpressure,maximum pressure rise rate and impulse of transmitted wave decrease exponentially with increase in sample thickness.For the same thickness,F-400 provides better protective capability than F-200 while P-1100 shows the best protective capability among the three materials.In this study,as the materials are not destroyed,F-200 with a thickness more than10.0 mm,F-400 with a thickness more than 4.0 mm,and P-1100 with a thickness more than 1.0 mm can attenuate the overpressure amplitude more than 90.0%.Further,multi-layer flexible composites are designed.Different layer layouts of designed structures and layer thickness of the single-layer materials can affect the protective performance.Within the research range,the structure in which polyurea is placed on the impact side shows the optimal shock wave protective performance,and the thicknesses of polyurea and polyurethane foam are 1.0 mm and 4.0 mm respectively.The overpressure attenuation rate reached maximum value of 93.3%and impulse attenuation capacity of this structure are better than those of single-layer polyurea and polyurethane foam with higher areal density. 展开更多
关键词 Free-field explosion Weak shock wave mitigation POLYUREA Polyurethane foam Multi-layered composites
下载PDF
Modeling of the whole process of shock wave overpressure of freefield air explosion 被引量:6
5
作者 Zai-qing Xue Shunping Li +2 位作者 Chun-liang Xin Li-ping Shi Hong-bin Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2019年第5期815-820,共6页
The waveform of the explosion shock wave under free-field air explosion is an extremely complex problem.It is generally considered that the waveform consists of overpressure peak,positive pressure zone and negative pr... The waveform of the explosion shock wave under free-field air explosion is an extremely complex problem.It is generally considered that the waveform consists of overpressure peak,positive pressure zone and negative pressure zone.Most of current practice usually considers only the positive pressure.Many empirical relations are available to predict overpressure peak,the positive pressure action time and pressure decay law.However,there are few models that can predict the whole waveform.The whole process of explosion shock wave overpressure,which was expressed as the product of the three factor functions of peak,attenuation and oscillation,was proposed in the present work.According to the principle of explosion similarity,the scaled parameters were introduced and the empirical formula was absorbed to form a mathematical model of shock wave overpressure.Parametric numerical simulations of free-field air explosions were conducted.By experimental verification of the AUTODYN numerical method and comparing the analytical and simulated curves,the model is proved to be accurate to calculate the shock wave overpressure under free-field air explosion.In addition,through the model the shock wave overpressure at different time and distance can be displayed in three dimensions.The model makes the time needed for theoretical calculation much less than that for numerical simulation. 展开更多
关键词 AIR explosion shock wave OVERPRESSURE Free field Experimental VERIFICATION NUMERICAL simulation
下载PDF
Effect of Shock Wave on Fabricated Anti-Blast Wall and Distribution Law Around the Wall Under Near Surface Explosion 被引量:1
6
作者 伍俊 刘晶波 闫秋实 《Transactions of Tianjin University》 EI CAS 2008年第B10期514-518,共5页
The loads of shock wave effect on fabricated anti-blast wail and distribution law around the wall were investigated by using near surface explosion test method and FEM. The pressure-time histories and variety law on t... The loads of shock wave effect on fabricated anti-blast wail and distribution law around the wall were investigated by using near surface explosion test method and FEM. The pressure-time histories and variety law on the foreside and backside of the anti-blast wall were adopted in the tests of variety of different explosion distances and dynamites, as well as in the comparison between the test and numerical calculation. The test results show that the loads of shock wave effect on the anti-blast wall were es- sen-tially consistent with calculation results using criterion under surface explosion when explosion dis- tances exceed 2 m, the distribution of overpressure behind wall was gained according to variety law based on small-large-small. It is also demonstrated that the peak overpressure behind wall had com- monly appeared in wall height by 1.5--2.5 multiples, and the peak overpressures of protective building behind wall could be reduced effectively by using the fabricated anti-blast wall. 展开更多
关键词 anti-blast wall near surface explosion OVERPRESSURE shock wave
下载PDF
Numerical Simulation of the Protective Effect of Complex Boundaries Toward Shock Waves in a 3D Explosive Field 被引量:3
7
作者 吴开腾 宁建国 《Journal of Beijing Institute of Technology》 EI CAS 2003年第1期50-54,共5页
A numerical method is presented that simulates 3D explosive field problems. A code MMIC3D using this method can be used to simulate the propagation and reflected effects of all kinds of rigid boundaries to shock waves... A numerical method is presented that simulates 3D explosive field problems. A code MMIC3D using this method can be used to simulate the propagation and reflected effects of all kinds of rigid boundaries to shock waves produced by an explosive source. These numerical results indicate that the code MMIC3D has the ability in computing cases such as 3D shock waves produced by air explosion, vortex region of the shock wave, the Mach wave, and reflected waves behind rigid boundaries. 展开更多
关键词 explosive field shock wave MMIC3D numerical simulation complex boundaries
下载PDF
THE INFLUENCE OF BARRIERS ON FLAME AND EXPLOSION WAVE IN GAS EXPLOSION 被引量:4
8
作者 林柏泉 周世宁 张仁贵 《Journal of Coal Science & Engineering(China)》 1998年第2期53-57,共5页
This paper researches into the influence of barriers on flame and explosion wave in gas explosion on the basis of experiment. The result shows that the barrier is very important to the transmission of flame and explos... This paper researches into the influence of barriers on flame and explosion wave in gas explosion on the basis of experiment. The result shows that the barrier is very important to the transmission of flame and explosion wave in gas explosion. When there are barriers, the speed of transmission would be very fast and shock wave will appear in gas explosion, which would increase gas explosion power. The result of research is very important to prevent gas explosion and decrease the power of it. 展开更多
关键词 BARRIER explosion FLAME shock wave
下载PDF
Flame behavior, shock wave, and instantaneous thermal field generated by unconfined vapor-liquid propylene oxide/air cloud detonation
9
作者 Cong-liang Ye Qing-lei Du +1 位作者 Li-juan Liu Qi Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第7期18-32,共15页
Energy output and heating effects are essential for vapor-liquid fuel/air cloud detonation in the fuel-air explosive(FAE) applications or explosion accidents. The purpose of this study is to examine the dynamic large-... Energy output and heating effects are essential for vapor-liquid fuel/air cloud detonation in the fuel-air explosive(FAE) applications or explosion accidents. The purpose of this study is to examine the dynamic large-size flame behavior, shock wave propagation law, and instantaneous thermal field generated by unconfined vapor-liquid propylene oxide(PO)/air cloud detonation. Based on computational fluid dynamics(CFD) and combustion theory, a numerical simulation is used to study the detonation process of a PO/air cloud produced by a double-event fuel-air explosive(DEFAE) of 2.16 kg. The large-scale flame behavior is characterized. The flame initially spreads radially and laterally in a wing shape. Subsequently,the developed flame increases with a larger aspect ratio. Moreover, the propagation laws of shock waves at different heights are discussed. The peak pressure of 1.3 m height level with a stepwise decline is obviously different from that of the ground with an amplitude of reversed ’N’ shape. In the vast majority of the first 6.9 m, the destructive effect of the shock wave near the ground is greater than that of the shock wave at 1.3 m height. Furthermore, the dynamic instantaneous isothermal field is demonstrated.The scaling relationship of various isotherms in the instantaneous thermal field with the flame and initial cloud is summarized. The comprehensive numerical model used in this study can be applied to determine the overpressure and temperature distribution in the entire fuel/air cloud detonation field,providing guidance for assessing the extent of damage caused by DEFAE detonation. 展开更多
关键词 Numerical simulation Fuel-air explosive Fuel/air cloud FLAME shock wave Thermal field
下载PDF
Experimental Investigation on Shock Wave Characteristics of Aluminized Explosives in Air Blast 被引量:1
10
作者 Xiaoyu Duan Qingzhong Cui +2 位作者 Xueyong Guo Qiushi Wang Qingjie Jiao 《Journal of Beijing Institute of Technology》 EI CAS 2017年第2期165-173,共9页
To investigate the shock wave characteristics of RDX-based aluminized explosives,air blast tests were conducted for measuring the parameters of 10 kg aluminized explosives which contained 0-40% aluminum.The results sh... To investigate the shock wave characteristics of RDX-based aluminized explosives,air blast tests were conducted for measuring the parameters of 10 kg aluminized explosives which contained 0-40% aluminum.The results showed that with the increasing of aluminum content,the overpressures and impulses increase at first and then decrease within 7 m or 5 m,which reached the maximum when aluminum content was 20% or 30%.Power exponential formulas are used to fit the shock wave parameters vs scaled distance,where an equal weight of TNT is used to calculate the scaled distance.The overpressures of HL0 and TNT in tested locations not only conform to the similar law,but also conform to the same attenuation law after gaining the scaled distances of equal TNT mass.The pre-exponential factors of overpressure and impulse,kp and kI,decrease along with the increasing of Al content and keep the same pace as the calculated PCJ).The attenuation coefficients a_P and aIincrease at first and decrease later with the increasing of aluminum content,and they reached the maximal values with30% Al containing,which keeps the same pace as the calculated QV. 展开更多
关键词 aluminized explosives air blast shock wave ATTENUATION
下载PDF
EXPLOSIVE CONSOLIDATION OF METALLIC FILAMENTS UNDER CYLINDRICAL CONVERGING SHOCK WAVE
11
作者 GAO Juxian SHAO Binghuang ZHANG Ke ZHENG Zhemin Institute of Mechanics,Academia Sinica,Beijing,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1991年第8期121-126,共6页
Two dimensional explosive consolidation under cylindrical converging shock wave has been studied by use of coated fine iron filaments compacts to replace conventional metallic powder, so the randomness of three-dimens... Two dimensional explosive consolidation under cylindrical converging shock wave has been studied by use of coated fine iron filaments compacts to replace conventional metallic powder, so the randomness of three-dimensional spatial distribution of metallic powder might be avoided.The deformation and surface flow pattern of particles as well as the mechanism of consolidation have been clarified experimentally.The distribution of high temperature area is in agreement with the result of numerical simulation by Williamson.A model for the explosive consolidation was given. 展开更多
关键词 explosive consolidation shock wave metallic powder
下载PDF
Destruction mechanism of gas explosion to ventilation facilities and automatic recovery technology 被引量:8
12
作者 Wang Kai Jiang Shuguang +3 位作者 Zhang Weiqing Wu Zhengyan Shao Hao Kou Liwen 《International Journal of Mining Science and Technology》 SCIE EI 2012年第3期417-422,共6页
In order to overcome the heavy casualties caused by gas explosion, we verified the propagation law of shock wave in pipeline and the overpressure distribution of gas explosion by similar experiments according to the a... In order to overcome the heavy casualties caused by gas explosion, we verified the propagation law of shock wave in pipeline and the overpressure distribution of gas explosion by similar experiments according to the analyses of reasons for casualty and ventilation system model destroyed by gas explosion in the mining face. We summarized the gas composition after the explosion and its danger, analyzed the effects of the gas explosion shock wave to ventilation system and facilities and the laws of toxic gas spread and diffusion in the ventilation network after the explosion. We presented a technical proposal to control the smoke and recover the ventilation system after a gas explosion and developed a reserve air door and control system that were embed in the lane, and could close automatically in conditions of no pressure and electricity. The results showed that the reserve air door normally opened and could close automatically controlling the smoke flow and resuming the ventilation system when the gas explosion shock wave destroyed the original shutting air door which resulted in the air short circuit. 展开更多
关键词 Gas explosion shock wave Destroy of the air door Airflow disorder Air network recovery
下载PDF
IMPROVEMENT OF MATERIALS WELDABILITY BY SHOCK WAVES 被引量:4
13
作者 H. N. Chen, D. Li and H. Y. Du Institute of Metal Research,The Chinese Academy of Sciences, Shenyang 110015, China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1999年第5期794-801,共8页
The weldability is an important property to metal materials. Materials weldability becomes worse with the yield strength increasing. The experimental results indicate that the specific shock waves treatment could impr... The weldability is an important property to metal materials. Materials weldability becomes worse with the yield strength increasing. The experimental results indicate that the specific shock waves treatment could improve the weldability of steels such as 16MnR, SM 58Q, e.g. increase the notch toughness of coarse grains zone in HAZ and decrease cold cracking sensibility. The work would explore initially the mechanisms of improvement of weldability by shock waves. The further study on the low alloy high strength steel WEL TEN80 indicates that the shock waves may increase the material weldability on this grade of trength. 展开更多
关键词 shock waves WELDABILITY explosion
下载PDF
Fourier and Wavelet Transform Analysis of Pressure Signals during Explosive Boiling 被引量:2
14
作者 尹铁男 淮秀兰 《Chinese Physics Letters》 SCIE CAS CSCD 2008年第3期1004-1007,共4页
The transient pressure in a liquid-pool during explosive boiling of acetone is measured by a micro-pressure-measuring system. The Fast Fourier transform and continuous wavelet transform methods are applied to investig... The transient pressure in a liquid-pool during explosive boiling of acetone is measured by a micro-pressure-measuring system. The Fast Fourier transform and continuous wavelet transform methods are applied to investigate the frequency characteristics. The results show that the dominant frequency of the explosive boiling is 0-2 MHz, and the bubble cluster formed by numerous tiny bubbles departs twice. Analysis and discussions are also conducted to explain the bubble evolution during the explosive boiling. 展开更多
关键词 supernova explosion proto-neutron star shock wave
下载PDF
The effect of duct surface character on methane explosion propagation 被引量:1
15
作者 林柏泉 叶青 +1 位作者 菅从光 吴海进 《Journal of Coal Science & Engineering(China)》 2007年第3期243-246,共4页
The effect of duct surface character on methane explosion propagation was experimentally studied and theoretically analyzed. The roughness has effect on methane explosion propagation. The flame propagation velocity an... The effect of duct surface character on methane explosion propagation was experimentally studied and theoretically analyzed. The roughness has effect on methane explosion propagation. The flame propagation velocity and the peak value pressure of methane explosion in rough duct are larger than the parameters in smooth duct. The heat exchange of the surface has effect on methane explosion propagation. The propagation velocity of flame and strength of explosion wave in the duct covered by heat insulation material are larger than those in duct with good heat transmittability. 展开更多
关键词 shock wave explosion ROUGHNESS thermal transmittability
下载PDF
Centrifuge Model Tests and Numerical Simulations of the Impact of Underwater Explosion on an Air-Backed Steel Plate
16
作者 Zhijie Huang Zuyu Chen +3 位作者 Xiaodan Ren Jing Hu Xuedong Zhang Lu Hai 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第1期139-155,共17页
Damage and threats to hydraulic and submarine structures by underwater explosions(UNDEXs)have raised much attention.The centrifuge model test,compared to prototype test,is a more promising way to examine the problem w... Damage and threats to hydraulic and submarine structures by underwater explosions(UNDEXs)have raised much attention.The centrifuge model test,compared to prototype test,is a more promising way to examine the problem while reducing cost and satisfying the similitude requirements of both Mach and Froude numbers simultaneously.This study used a systematic approach employing centrifuge model tests and numerical simulations to investigate the effects of UNDEXs on an air-backed steel plate.Nineteen methodical centrifuge tests of UNDEXs were conducted.The shock wave pressure,bubble oscillation pressure,acceleration and the strain of the air-backed steel plate were recorded and compared with numerical studies using the finite element analysis(FEA)commercial software ABAQUS.By implementing empirically derived and physically measured pressures into the numerical models,the effects of the shock wave and bubble oscillation on the steel plate were investigated.Generally,the numerical results were in agreement with the experimental results.These results showed that the peak pressure of an UNDEX has a significant effect on the peak acceleration of the steel plate and that the impulse of the UNDEX pressure governs the peak strain of the steel plate. 展开更多
关键词 CENTRIFUGE model tests NUMERICAL simulation UNDERWATER explosion shock wave BUBBLE oscillation.
下载PDF
Discharge and post-explosion behaviors of electrical explosion of conductors from a single wire to planar wire array
17
作者 Chen LI Ruoyu HAN +4 位作者 Yi LIU Jinlin ZHAO Yanan WANG Feng HE Jiting OUYANG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2022年第1期151-164,共14页
This work deals with an experimental study of a Cu planar wire array(PWA)in air and water under the stored energy 300-1200 J.A single Cu wire is adopted as a controlled trial.Four configurations of PWA and a wire with... This work deals with an experimental study of a Cu planar wire array(PWA)in air and water under the stored energy 300-1200 J.A single Cu wire is adopted as a controlled trial.Four configurations of PWA and a wire with the same mass(cross-section area)but the different specific surface areas(15-223 cm^(2)g^(-1))are exploded.The transient process is analyzed using high-speed photography in combination with the results of optical emission and discharge.Discharge characteristics revealed that PWA always has a higher electric power peak,early but higher voltage peak,as well as faster vaporization and ionization process than the single-wire case.Two to three times stronger optical emission could be obtained when replacing the single-wire with PWA,indicating a higher energy-density state is reached.Phenomenologically,in both air and water,single-wire load tends to develop a transverse stratified structure,while PWA is dominated by the uneven energy deposition among wires.Finally,the synchronism and uniformity of the PWA explosion are discussed. 展开更多
关键词 electrical explosion wire array metal plasma plasma radiation shock wave
下载PDF
Shock Waves in the Solar Atmosphere
18
作者 Fisenko, M. I. 《Journal of Physical Science and Application》 2017年第1期35-38,共4页
The discovery of shock waves at observations sun like stars quasi-zero method. Shock waves associated with solar flares in Ha, it is shown that the amplitude of shock waves decreases to the edge of the sun, it follows... The discovery of shock waves at observations sun like stars quasi-zero method. Shock waves associated with solar flares in Ha, it is shown that the amplitude of shock waves decreases to the edge of the sun, it follows that these waves are global. The conclusion is that the appearance of these waves may be connected with explosions in the deeper layers of the sun. 展开更多
关键词 shock waves solar flares the global wave of explosions in the deep layers of the sun.
下载PDF
Damage of a large-scale reinforced concrete wall caused by an explosively formed projectile(EFP)
19
作者 Li-kai Hao Wen-bin Gu +5 位作者 Ya-dong Zhang Qi Yuan Xing-bo Xie Shao-xin Zou Zhen Wang Ming Lu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第10期280-297,共18页
To quickly break through a reinforced concrete wall and meet the damage range requirements of rescuers entering the building,the combined damage characteristics of the reinforced concrete wall caused by EFP penetratio... To quickly break through a reinforced concrete wall and meet the damage range requirements of rescuers entering the building,the combined damage characteristics of the reinforced concrete wall caused by EFP penetration and explosion shock wave were studied.Based on LS-DYNA finite element software and RHT model with modified parameters,a 3D large-scale numerical model was established for simulation analysis,and the rationality of the material model parameters and numerical simulation algorithm were verified.On this basis,the combined damage effect of EFP penetration and explosion shock wave on reinforced concrete wall was studied,the effect of steel bars on the penetration of EFP was highlighted,and the effect of impact positions on the damage of the reinforced concrete wall was also examined.The results reveal that the designed shaped charge can form a crater with a large diameter and high depth on the reinforced concrete wall.The average crater diameter is greater than 67 cm(5.58 times of charge diameter),and crater depth is greater than 22 cm(1.83 times of charge diameter).The failure of the reinforced concrete wall is mainly caused by EFP penetration.When only EFP penetration is considered,the average diameter and depth of the crater are 54.0 cm(4.50 times of charge diameter)and 23.7 cm(1.98 times of charge diameter),respectively.The effect of explosion shock wave on crater depth is not significant,resulting in a slight increase in crater depth.The average crater depth is 24.5 cm(2.04 times of charge diameter)when the explosion shock wave is considered.The effect of explosion shock wave on the crater diameter is obvious,which can aggravate the damage range of the crater,and the effect gradually decreases with the increase of standoff distance.Compared with the results for a plain concrete wall,the crater diameter and crater depth of the reinforced concrete wall are reduced by 5.94%and 9.96%,respectively.Compared to the case in which the steel bar is not hit,when the EFP hit one steel bar and the intersection of two steel bars,the crater diameter decreases by 1.36%and 5.45%respectively,the crater depth decreases by 4.92%and 14.02%respectively.The EFP will be split by steel bar during the penetration process,resulting in an irregular trajectory. 展开更多
关键词 Reinforced concrete explosively formed projectile(EFP) PENETRATION explosion shock wave Numerical simulation
下载PDF
海拔高度对长直坑道内爆炸冲击波传播的影响
20
作者 李勇 雒泓宇 +3 位作者 冯晓伟 胡宇鹏 张军 李海涛 《爆炸与冲击》 EI CAS CSCD 北大核心 2024年第3期103-115,共13页
为有效表征不同海拔坑道内爆炸冲击波的传播特征,利用非线性显式动力学有限元软件AUTODYN,研究了海拔高度对长直坑道内爆炸冲击波传播的影响规律,探讨了高海拔环境对坑道内冲击波传播的影响,基于量纲分析,建立了适用于不同海拔高度典型... 为有效表征不同海拔坑道内爆炸冲击波的传播特征,利用非线性显式动力学有限元软件AUTODYN,研究了海拔高度对长直坑道内爆炸冲击波传播的影响规律,探讨了高海拔环境对坑道内冲击波传播的影响,基于量纲分析,建立了适用于不同海拔高度典型坑道内冲击波峰值超压的计算模型,并通过数值计算进行了验证。结果表明:随着海拔高度升高,坑道内爆炸冲击波波阵面传播速度与径向的冲击波参数偏差增大,平面波形成距离增加,冲击波峰值超压降低;在0~4000 m范围内,海拔高度每升高1000 m,冲击波冲量降低约0.91%。结合Sachs无量纲修正方法和量纲分析,推导出不同海拔高度冲击波峰值超压的理论分析模型,模型计算结果与数值计算结果的相对偏差不大于10%,能够为高海拔环境下坑道内爆炸冲击波的传播提供理论依据。 展开更多
关键词 海拔高度 坑道 爆炸冲击波 量纲分析 传播特性
下载PDF
上一页 1 2 69 下一页 到第
使用帮助 返回顶部