On the basis of the theories of mechanics of explosive and rock fracture mechanics, the mechanism of crack initiation and its expansion of directional fracture controlled blasting with shaped charges in rock were stud...On the basis of the theories of mechanics of explosive and rock fracture mechanics, the mechanism of crack initiation and its expansion of directional fracture controlled blasting with shaped charges in rock were studied, then the blasting parameters were designed and tested by a model test in laboratory and field experiment. The experimental and test results showed that the energy from blasting is directionally concentrated for the cumulative action. The directional expansion of cracks is satisfactory, the results of the model test and field test suggested that the orientation fracture blasting with shaped charge is a good means of excavating tunnels or cutting rock.展开更多
A series of single hole blasting crater experiments and a variable distance multi-hole simultaneous blasting experiment was carried in the Yunfu Troilite Mine,according to the Livingston blasting crater theory.We intr...A series of single hole blasting crater experiments and a variable distance multi-hole simultaneous blasting experiment was carried in the Yunfu Troilite Mine,according to the Livingston blasting crater theory.We introduce in detail,our methodology of data collection and processing from our experiments.Based on the burying depth of the explosives,the blasting crater volume was fitted by the method of least squares and the characteristic curve of the blasting crater was obtained using the MATLAB soft- ware.From this third degree polynomial,we have derived the optimal burying depth,the critical burying depth and the optimal explosive specific charge of the blasting crater.展开更多
A layered charge composed of the JH-2 explosive enveloped by a thick-walled cylindrical casing(active aluminum/rubber and inert lithium fluoride/rubber composites) was designed and explosion experiments were conducted...A layered charge composed of the JH-2 explosive enveloped by a thick-walled cylindrical casing(active aluminum/rubber and inert lithium fluoride/rubber composites) was designed and explosion experiments were conducted in a 1.3 m3tank and a 113 m3bunker.The blast parameters,including the quasistatic pressure(ΔpQS),special impulse(I),and peak overpressure(Δpmax),and images of the explosion process were recorded,and the influence of the Al content(30% and 50%) and Al particle size(1,10,and 50 μm) on the energy release of aluminum/rubber composites were investigated.The results revealed that the use of an active layer increased the peak overpressure generated by the primary blast wave,as well as the quasistatic pressure and special impulse related to fuel burning within tens of milliseconds after detonation.When the Al content was increased from 30% to 50%,the increases of ΔpQS and I were not obvious,and Δpmaxeven decreased,possibly because of decreased combustion efficiency and greater absorption of the blast wave energy for layers with 50% Al.Compared with the pure JH-2charge,the charge with 1 μm Al particles produced the highest Δpmax,indicating that better transient blast performance was generated by smaller Al particles.However,the charge with 10 μm Al particles showed the largest ΔpQSand I,suggesting that a stronger destructive effect occurred over a longer duration for charges that contained moderate 10 μm Al.展开更多
Plane charge explosion technique (PCET) is one of the major techniques frequently used in large-scale blast-resistant structure tests. An FEM model was established, which can simulate the process of air releasing from...Plane charge explosion technique (PCET) is one of the major techniques frequently used in large-scale blast-resistant structure tests. An FEM model was established, which can simulate the process of air releasing from the blast cavity. The effects of the charge density, the interval of the charge strip, the distance of the charges from the structure, and the mass of backfill soil on the overpressures applied on the tested structures were analyzed by the FEM model. The quantitative relationships between the peak value and the duration of the overpressure and the above-mentioned affecting parameters were established. Agreement between numerical results and the test data was obtained.展开更多
文摘On the basis of the theories of mechanics of explosive and rock fracture mechanics, the mechanism of crack initiation and its expansion of directional fracture controlled blasting with shaped charges in rock were studied, then the blasting parameters were designed and tested by a model test in laboratory and field experiment. The experimental and test results showed that the energy from blasting is directionally concentrated for the cumulative action. The directional expansion of cracks is satisfactory, the results of the model test and field test suggested that the orientation fracture blasting with shaped charge is a good means of excavating tunnels or cutting rock.
文摘A series of single hole blasting crater experiments and a variable distance multi-hole simultaneous blasting experiment was carried in the Yunfu Troilite Mine,according to the Livingston blasting crater theory.We introduce in detail,our methodology of data collection and processing from our experiments.Based on the burying depth of the explosives,the blasting crater volume was fitted by the method of least squares and the characteristic curve of the blasting crater was obtained using the MATLAB soft- ware.From this third degree polynomial,we have derived the optimal burying depth,the critical burying depth and the optimal explosive specific charge of the blasting crater.
基金funded by the National Natural Science Foundation of China(Grant No.11972018)the Defense Pre-Research Joint Foundation of Chinese Ordnance Industry(Grant No.6141B012858)。
文摘A layered charge composed of the JH-2 explosive enveloped by a thick-walled cylindrical casing(active aluminum/rubber and inert lithium fluoride/rubber composites) was designed and explosion experiments were conducted in a 1.3 m3tank and a 113 m3bunker.The blast parameters,including the quasistatic pressure(ΔpQS),special impulse(I),and peak overpressure(Δpmax),and images of the explosion process were recorded,and the influence of the Al content(30% and 50%) and Al particle size(1,10,and 50 μm) on the energy release of aluminum/rubber composites were investigated.The results revealed that the use of an active layer increased the peak overpressure generated by the primary blast wave,as well as the quasistatic pressure and special impulse related to fuel burning within tens of milliseconds after detonation.When the Al content was increased from 30% to 50%,the increases of ΔpQS and I were not obvious,and Δpmaxeven decreased,possibly because of decreased combustion efficiency and greater absorption of the blast wave energy for layers with 50% Al.Compared with the pure JH-2charge,the charge with 1 μm Al particles produced the highest Δpmax,indicating that better transient blast performance was generated by smaller Al particles.However,the charge with 10 μm Al particles showed the largest ΔpQSand I,suggesting that a stronger destructive effect occurred over a longer duration for charges that contained moderate 10 μm Al.
文摘Plane charge explosion technique (PCET) is one of the major techniques frequently used in large-scale blast-resistant structure tests. An FEM model was established, which can simulate the process of air releasing from the blast cavity. The effects of the charge density, the interval of the charge strip, the distance of the charges from the structure, and the mass of backfill soil on the overpressures applied on the tested structures were analyzed by the FEM model. The quantitative relationships between the peak value and the duration of the overpressure and the above-mentioned affecting parameters were established. Agreement between numerical results and the test data was obtained.