Thermal runaway(TR)is a critical issue hindering the large-scale application of lithium-ion batteries(LIBs).Understanding the thermal safety behavior of LIBs at the cell and module level under different state of charg...Thermal runaway(TR)is a critical issue hindering the large-scale application of lithium-ion batteries(LIBs).Understanding the thermal safety behavior of LIBs at the cell and module level under different state of charges(SOCs)has significant implications for reinforcing the thermal safety design of the lithium-ion battery module.This study first investigates the thermal safety boundary(TSB)correspondence at the cells and modules level under the guidance of a newly proposed concept,safe electric quantity boundary(SEQB).A reasonable thermal runaway propagation(TRP)judgment indicator,peak heat transfer power(PHTP),is proposed to predict whether TRP occurs.Moreover,a validated 3D model is used to quantitatively clarify the TSB at different SOCs from the perspective of PHTP,TR trigger temperature,SOC,and the full cycle life.Besides,three different TRP transfer modes are discovered.The interconversion relationship of three different TRP modes is investigated from the perspective of PHTP.This paper explores the TSB of LIBs under different SOCs at both cell and module levels for the first time,which has great significance in guiding the thermal safety design of battery systems.展开更多
Anticipating the imminent surge of retired lithium-ion batteries(R-LIBs)from electric vehicles,the need for safe,cost-effective and environmentally friendly disposal technologies has escalated.This paper seeks to offe...Anticipating the imminent surge of retired lithium-ion batteries(R-LIBs)from electric vehicles,the need for safe,cost-effective and environmentally friendly disposal technologies has escalated.This paper seeks to offer a comprehensive overview of the entire disposal framework for R-LIBs,encompassing a broad spectrum of activities,including screening,repurposing and recycling.Firstly,we delve deeply into a thorough examination of current screening technologies,shifting the focus from a mere enumeration of screening methods to the exploration of the strategies for enhancing screening efficiency.Secondly,we outline battery repurposing with associated key factors,summarizing stationary applications and sizing methods for R-LIBs in their second life.A particular light is shed on available reconditioning solutions,demonstrating their great potential in facilitating battery safety and lifetime in repurposing scenarios and identifying their techno-economic issues.In the realm of battery recycling,we present an extensive survey of pre-treatment options and subsequent material recovery technologies.Particularly,we introduce several global leading recyclers to illustrate their industrial processes and technical intricacies.Furthermore,relevant challenges and evolving trends are investigated in pursuit of a sustainable end-of-life management and disposal framework.We hope that this study can serve as a valuable resource for researchers,industry professionals and policymakers in this field,ultimately facilitating the adoption of proper disposal practices.展开更多
Lithium-ion batteries have extensive usage in various energy storage needs,owing to their notable benefits of high energy density and long lifespan.The monitoring of battery states and failure identification are indis...Lithium-ion batteries have extensive usage in various energy storage needs,owing to their notable benefits of high energy density and long lifespan.The monitoring of battery states and failure identification are indispensable for guaranteeing the secure and optimal functionality of the batteries.The impedance spectrum has garnered growing interest due to its ability to provide a valuable understanding of material characteristics and electrochemical processes.To inspire further progress in the investigation and application of the battery impedance spectrum,this paper provides a comprehensive review of the determination and utilization of the impedance spectrum.The sources of impedance inaccuracies are systematically analyzed in terms of frequency response characteristics.The applicability of utilizing diverse impedance features for the diagnosis and prognosis of batteries is further elaborated.Finally,challenges and prospects for future research are discussed.展开更多
Typical application scenarios,such as vehicle to grid(V2G)and frequency regulation,have imposed significant long-life demands on lithium-ion batteries.Herein,we propose an advanced battery life-extension method employ...Typical application scenarios,such as vehicle to grid(V2G)and frequency regulation,have imposed significant long-life demands on lithium-ion batteries.Herein,we propose an advanced battery life-extension method employing bidirectional pulse charging(BPC)strategy.Unlike traditional constant current charging methods,BPC strategy not only achieves comparable charging speeds but also facilitates V2G frequency regulation simultaneously.It significantly enhances battery cycle ampere-hour throughput and demonstrates remarkable life extension capabilities.For this interesting conclusion,adopting model identification and postmortem characterization to reveal the life regulation mechanism of BPC:it mitigates battery capacity loss attributed to loss of lithium-ion inventory(LLI)in graphite anodes by intermittently regulating the overall battery voltage and anode potential using a negative charging current.Then,from the perspective of internal side reaction,the life extension mechanism is further revealed as inhibition of solid electrolyte interphase(SEI)and lithium dendrite growth by regulating voltage with a bidirectional pulse current,and a semi-empirical life degradation model combining SEI and lithium dendrite growth is developed for BPC scenarios health management,the model parameters are identified by genetic algorithm with the life simulation exhibiting an accuracy exceeding 99%.This finding indicates that under typical rate conditions,adaptable BPC strategies can extend the service life of LFP battery by approximately 123%.Consequently,the developed advanced BPC strategy offers innovative perspectives and insights for the development of long-life battery applications in the future.展开更多
A chemo-mechanical model is developed to investigate the effects on the stress development of the coating of polycrystalline Ni-rich LiNixMnyCo_(z)O_(2)(x≥0.8)(NMC)particles with poly(3,4-ethylenedioxythiophene)(PEDO...A chemo-mechanical model is developed to investigate the effects on the stress development of the coating of polycrystalline Ni-rich LiNixMnyCo_(z)O_(2)(x≥0.8)(NMC)particles with poly(3,4-ethylenedioxythiophene)(PEDOT).The simulation results show that the coating of primary NMC particles significantly reduces the stress generation by efficiently accommodating the volume change associated with the lithium diffusion,and the coating layer plays roles both as a cushion against the volume change and a channel for the lithium transport,promoting the lithium distribution across the secondary particles more homogeneously.Besides,the lower stiffness,higher ionic conductivity,and larger thickness of the coating layer improve the stress mitigation.This paper provides a mathematical framework for calculating the chemo-mechanical responses of anisotropic electrode materials and fundamental insights into how the coating of NMC active particles mitigates stress levels.展开更多
Mn-rich LiFe_(1-x)Mn_(x)PO_(4)(x>0.5),which combines the high operation voltage of LiMnPO_(4)with excellent rate performa nce of LiFePO4,is hindered by its sluggish kinetic properties.Herein,thermodynamic equilibri...Mn-rich LiFe_(1-x)Mn_(x)PO_(4)(x>0.5),which combines the high operation voltage of LiMnPO_(4)with excellent rate performa nce of LiFePO4,is hindered by its sluggish kinetic properties.Herein,thermodynamic equilibrium analysis of Mn^(2+)-Fe^(2+)-Mg^(2+)-C_(2)O_(4)^(2-)-H_(2)O system is used to guide the design and preparation of insitu Mg-doped(Fe_(0.4)Mn_(0.6))_(1-x)Mg_(x)C_(2)O_(4)intermediate,which is then employed as an innovative precursor to synthesize high-performance Mg-doped LiFe_(0.4)Mn_(0.6)PO_(4).It indicates that the metal ions with a high precipitation efficiency and the stoichiometric precursors with uniform element distribution can be achieved under the optimized thermodynamic conditions.Meanwhile,accelerated Li+diffusivity and reduced charge transfer resistance originating from Mg doping are verified by various kinetic characterizations.Benefiting from the contributions of inherited homogeneous element distribution,small particle size,uniform carbon layer coating,enhanced Li+migration ability and structural stability induced by Mg doping,the Li(Fe_(0.4)Mn_(0.6))_(0.97)Mg_(0.03)PO_(4)/C exhibits splendid electrochemical performance.展开更多
Lithium-ion batteries are widely recognized as a crucial enabling technology for the advancement of electric vehicles and energy storage systems in the grid.The design of battery state estimation and control algorithm...Lithium-ion batteries are widely recognized as a crucial enabling technology for the advancement of electric vehicles and energy storage systems in the grid.The design of battery state estimation and control algorithms in battery management systems is usually based on battery models,which interpret crucial battery dynamics through the utilization of mathematical functions.Therefore,the investigation of battery dynamics with the purpose of battery system identification has garnered considerable attention in the realm of battery research.Characterization methods in terms of linear and nonlinear response of lithium-ion batteries have emerged as a prominent area of study in this field.This review has undertaken an analysis and discussion of characterization methods,with a particular focus on the motivation of battery system identification.Specifically,this work encompasses the incorporation of frequency domain nonlinear characterization methods and dynamics-based battery electrical models.The aim of this study is to establish a connection between the characterization and identification of battery systems for researchers and engineers specialized in the field of batteries,with the intention of promoting the advancement of efficient battery technology for real-world applications.展开更多
The demand for lithium-ion batteries(LIBs)is driven largely by their use in electric vehicles,which is projected to increase dramatically in the future.This great success,however,urgently calls for the efficient recyc...The demand for lithium-ion batteries(LIBs)is driven largely by their use in electric vehicles,which is projected to increase dramatically in the future.This great success,however,urgently calls for the efficient recycling of LIBs at the end of their life.Herein,we describe a froth flotation-based process to recycle graphite—the predominant active material for the negative electrode—from spent LIBs and investigate its reuse in newly assembled LIBs.It has been found that the structure and morphology of the recycled graphite are essentially unchanged compared to pristine commercial anode-grade graphite,and despite some minor impurities from the recycling process,the recycled graphite provides a remarkable reversible specific capacity of more than 350 mAh g^(−1).Even more importantly,newly assembled graphite‖NMC532 cells show excellent cycling stability with a capacity retention of 80%after 1000 cycles,that is,comparable to the performance of reference full cells comprising pristine commercial graphite.展开更多
Separators play a critical role in the safety and performance of lithium-ion batteries.However,commercial polyolefin separators are limited by their poor affinity with electrolytes and low melting points.In this work,...Separators play a critical role in the safety and performance of lithium-ion batteries.However,commercial polyolefin separators are limited by their poor affinity with electrolytes and low melting points.In this work,we constructed a reinforced-concrete-like structure by homogeneously dispersing nano-Al_(2)O_(3) and cellulose on the separators to improve their stability and performance.In this reinforcedconcrete-like structure,the cellulose is a reinforcing mesh,and the nano-Al_(2)O_(3) acts as concrete to support the separator.After constructing the reinforced-concrete-like structure,the separators exhibit good stability even at 200℃(thermal shrinkage of 0.3%),enhanced tensile strain(tensile stress of 133.4 MPa and tensile strains of 62%),and better electrolyte wettability(a contact angle of 6.5°).Combining these advantages,the cells with nano-Al_(2)O_(3)@cellulose-coated separators exhibit stable cycling performance and good rate performance.Therefore,the construction of the reinforced-concretelike structure is a promising technology to promote the application of lithium-ion batteries in extreme environments.展开更多
Metal-organic frameworks(MOFs)are among the most promising materials for lithium-ion batteries(LIBs)owing to their high surface area,periodic porosity,adjustable pore size,and controllable chemical composition.For ins...Metal-organic frameworks(MOFs)are among the most promising materials for lithium-ion batteries(LIBs)owing to their high surface area,periodic porosity,adjustable pore size,and controllable chemical composition.For instance,their unique porous structures promote electrolyte penetration,ions transport,and make them ideal for battery separators.Regulating the chemical composition of MOF can introduce more active sites for electrochemical reactions.Therefore,MOFs and their related composites have been extensively and thoroughly explored for LIBs.However,the reported reviews solely include the applications of MOFs in the electrode materials of LIBs and rarely involve other aspects.A systematic review of the application of MOFs in LIBs is essential for understanding the mechanism of MOFs and better designing related MOFs battery materials.This review systematically evaluates the latest developments in pristine MOFs and MOF composites for LIB applications,including MOFs as the main materials(anode,cathode,separators,and electrolytes)to auxiliary materials(coating layers and additives for electrodes).Furthermore,the synthesis,modification methods,challenges,and prospects for the application of MOFs in LIBs are discussed.展开更多
The global importance of lithium-ion batteries(LIBs)has been increasingly underscored with the advancement of high-performance energy storage technologies.However,the end-of-life of these batteries poses significant c...The global importance of lithium-ion batteries(LIBs)has been increasingly underscored with the advancement of high-performance energy storage technologies.However,the end-of-life of these batteries poses significant challenges from environmental,economic,and resource management perspectives.This review paper focuses on the pyrometallurgy-based recycling process of lithium-ion batteries,exploring the fundamental understanding of this process and the importance of its optimization.Centering on the high energy consumption and emission gas issues of the pyrometallurgical recycling process,we systematically analyzed the capital-intensive nature of this process and the resulting technological characteristics.Furthermore,we conducted an in-depth discussion on the future research directions to overcome the existing technological barriers and limitations.This review will provide valuable insights for researchers and industry stakeholders in the battery recycling field.展开更多
Lithium-ion batteries are the preferred green energy storage method and are equipped with intelligent battery management systems(BMSs)that efficiently manage the batteries.This not only ensures the safety performance ...Lithium-ion batteries are the preferred green energy storage method and are equipped with intelligent battery management systems(BMSs)that efficiently manage the batteries.This not only ensures the safety performance of the batteries but also significantly improves their efficiency and reduces their damage rate.Throughout their whole life cycle,lithium-ion batteries undergo aging and performance degradation due to diverse external environments and irregular degradation of internal materials.This degradation is reflected in the state of health(SOH)assessment.Therefore,this review offers the first comprehensive analysis of battery SOH estimation strategies across the entire lifecycle over the past five years,highlighting common research focuses rooted in data-driven methods.It delves into various dimensions such as dataset integration and preprocessing,health feature parameter extraction,and the construction of SOH estimation models.These approaches unearth hidden insights within data,addressing the inherent tension between computational complexity and estimation accuracy.To enha nce support for in-vehicle implementation,cloud computing,and the echelon technologies of battery recycling,remanufacturing,and reuse,as well as to offer insights into these technologies,a segmented management approach will be introduced in the future.This will encompass source domain data processing,multi-feature factor reconfiguration,hybrid drive modeling,parameter correction mechanisms,and fulltime health management.Based on the best SOH estimation outcomes,health strategies tailored to different stages can be devised in the future,leading to the establishment of a comprehensive SOH assessment framework.This will mitigate cross-domain distribution disparities and facilitate adaptation to a broader array of dynamic operation protocols.This article reviews the current research landscape from four perspectives and discusses the challenges that lie ahead.Researchers and practitioners can gain a comprehensive understanding of battery SOH estimation methods,offering valuable insights for the development of advanced battery management systems and embedded application research.展开更多
With the rapid development of portable electronics,new energy vehicles,and smart grids,ion batteries are becoming one of the most widely used energy storage devices,while the safety concern of ion batteries has always...With the rapid development of portable electronics,new energy vehicles,and smart grids,ion batteries are becoming one of the most widely used energy storage devices,while the safety concern of ion batteries has always been an urgent problem to be solved.To develop a safety-guaranteed battery,the characterization of the internal structure is indispensable,where electron microscopy plays a crucial role.Based on this,this paper summarizes the application of transmission electron microscopy(TEM)in battery safety,further concludes and analyzes the aspects of dendrite growth and solid electrolyte interface(SEI)formation that affect the safety of ion batteries,and emphasizes the importance of electron microscopy in battery safety research and the potential of these techniques to promote the future development of this field.These advanced electron microscopy techniques and their prospects are also discussed.展开更多
Silicon anodes are promising for use in lithium-ion batteries.However,their practical application is severely limited by their large volume expansion leading to irreversible material fracture and electrical disconnect...Silicon anodes are promising for use in lithium-ion batteries.However,their practical application is severely limited by their large volume expansion leading to irreversible material fracture and electrical disconnects.This study proposes a new top-down strategy for preparing microsize porous silicon and introduces polyacrylonitrile(PAN)for a nitrogen-doped carbon coating,which is designed to maintain the internal pore volume and lower the expansion of the anode during lithiation and delithiation.We then explore the effect of temperature on the evolution of the structure of PAN and the electrochemical behavior of the composite electrode.After treatment at 400℃,the PAN coating retains a high nitrogen content of 11.35 at%,confirming the presence of C—N and C—O bonds that improve the ionic-electronic transport properties.This treatment not only results in a more intact carbon layer structure,but also introduces carbon defects,and produces a material that has remarkable stable cycling even at high rates.When cycled at 4 A g^(-1),the anode had a specific capacity of 857.6 mAh g^(-1) even after 200 cycles,demonstrating great potential for high-capacity energy storage applications.展开更多
Al is considered as a promising lithium-ion battery(LIBs)anode materials owing to its high theoretical capacity and appropri-ate lithation/de-lithation potential.Unfortunately,its inevitable volume expansion causes th...Al is considered as a promising lithium-ion battery(LIBs)anode materials owing to its high theoretical capacity and appropri-ate lithation/de-lithation potential.Unfortunately,its inevitable volume expansion causes the electrode structure instability,leading to poor cyclic stability.What’s worse,the natural Al2O3 layer on commercial Al pellets is always existed as a robust insulating barrier for elec-trons,which brings the voltage dip and results in low reversible capacity.Herein,this work synthesized core-shell Al@C-Sn pellets for LIBs by a plus-minus strategy.In this proposal,the natural Al2O3 passivation layer is eliminated when annealing the pre-introduced SnCl2,meanwhile,polydopamine-derived carbon is introduced as dual functional shell to liberate the fresh Al core from re-oxidization and alle-viate the volume swellings.Benefiting from the addition of C-Sn shell and the elimination of the Al2O3 passivation layer,the as-prepared Al@C-Sn pellet electrode exhibits little voltage dip and delivers a reversible capacity of 1018.7 mAh·g^(-1) at 0.1 A·g^(-1) and 295.0 mAh·g^(-1) at 2.0 A·g^(-1)(after 1000 cycles),respectively.Moreover,its diffusion-controlled capacity is muchly improved compared to those of its counterparts,confirming the well-designed nanostructure contributes to the rapid Li-ion diffusion and further enhances the lithium storage activity.展开更多
Fast charging is restricted primarily by the risk of lithium(Li)plating,a side reaction that can lead to the rapid capacity decay and dendrite-induced thermal runaway of lithium-ion batteries(LIBs).Investigation on th...Fast charging is restricted primarily by the risk of lithium(Li)plating,a side reaction that can lead to the rapid capacity decay and dendrite-induced thermal runaway of lithium-ion batteries(LIBs).Investigation on the intrinsic mechanism and the position of Li plating is crucial to improving the fast rechargeability and safety of LIBs.Herein,we investigate the Li plating behavior in porous electrodes under the restricted transport of Li^(+).Based on the theoretical model,it can be concluded that the Li plating on the anodeseparator interface(ASI)is thermodynamically feasible and kinetically advantageous.Meanwhile,the prior deposition of metal Li on the ASI rather than the anode-current collector interface(ACI)is verified experimentally.In order to facilitate the transfer of Li^(+)among the electrode and improve the utilization of active materials without Li plating,a bilayer asymmetric anode composed of graphite and hard carbon(GH)is proposed.Experimental and simulation results suggest that the GH hybrid electrode homogenizes the lithiated-rate throughout the electrode and outperforms the pure graphite electrode in terms of the rate performance and inhibition of Li plating.This work provides new insights into the behavior of Li plating and the rational design of electrode structure.展开更多
This work made use of the Aalto University Otanano-Nanomicroscopy Center and RAMI infrastructures.Financial support from Business Finland NextGenBat[grant number 211849]is greatly acknowledged.The tomography experimen...This work made use of the Aalto University Otanano-Nanomicroscopy Center and RAMI infrastructures.Financial support from Business Finland NextGenBat[grant number 211849]is greatly acknowledged.The tomography experiment was performed at the beamline ID16B of the European Synchrotron Radiation Facility(ESRF),Grenoble,France,in the frame of proposal CH-6644.The patent titled“Stabilized Positive Electrode Material to Enable High Energy and Power Density Lithium-Ion Batteries”(IPD3173)is pertinent to this manuscript.It was filed by Zahra Ahaliabadeh and Tanja Kallio,and the patent rights are held by Aalto University.展开更多
This work extensively investigates the thermal characteristic evolution of lithium-ion batteries under different degradation paths,and the evolution mechanism through multi-angle characterization is revealed.Under dif...This work extensively investigates the thermal characteristic evolution of lithium-ion batteries under different degradation paths,and the evolution mechanism through multi-angle characterization is revealed.Under different degradation paths,the evolution trend of temperature rise rate remains unchanged with respect to depth of discharge during the adiabatic discharge process,albeit to varying degrees of alteration.The temperature rise rate changes significantly with aging during the adiabatic discharge process under low-temperature cycling and high-rate cycling paths.The total heat generation rate,irreversible heat generation rate,and reversible heat generation rate exhibit similar evolution behavior with aging under different degradation paths.The interval range of endothermic process of reversible electrochemical reactions increases and the contribution of irreversible heat to the total heat increases with aging.To further standardize the assessment of different degradation paths on the thermal characteristics,this work introduces the innovative concept of“Ampere-hour temperature rise”.In low-temperature cycling and high-rate cycling paths,the ampere-hour temperature rise increases significantly with aging,particularly accentuated with higher discharge rates.Conversely,in high-temperature cycling and high-temperature storage paths,the ampere-hour temperature rise remains relatively stable during the initial stages of aging,yet undergoes a notable increase in the later stages of aging.The multi-angle characterization reveals distinct thermal evolution behavior under different degradation paths primarily attributed to different behavior changes of severe side reactions,such as lithium plating.The findings provide crucial insights for the safe utilization and management of lithium–ion batteries throughout the whole lifecycle.展开更多
Compared to nanostructured Si/C materials, micro-sized Si/C anodes for lithium-ion batteries (LIBs) have gained significant attention in recent years due to their higher volumetric energy density, reduced side reactio...Compared to nanostructured Si/C materials, micro-sized Si/C anodes for lithium-ion batteries (LIBs) have gained significant attention in recent years due to their higher volumetric energy density, reduced side reactions and low costs. However, they suffer from more severe volume expansion effects, making the construction of stable micro-sized Si/C anode materials crucial. In this study, we proposed a simple wet chemistry method to obtain porous micro-sized silicon (μP-Si) from waste AlSi alloys. Then, the μP-Si@carbon nanotubes (CNT)@C composite anode with high tap density was prepared by wrapping with CNT and coated with polyvinylpyrrolidone (PVP)-derived carbon. Electrochemical tests and finite element (FEM) simulations revealed that the introduction of CNTs and PVP-derived carbon synergistically optimize the stability and overall performance of the μP-Si electrode via construction of tough composite interface networks. As an anode material for LIBs, the μP-Si@CNT@C electrode exhibits boosted reversible capacity (∼ 3500 mAh·g^(−1) at 0.2 A·g^(−1)), lifetime and rate performance compared to pure μP-Si. Further full cell assembly and testing also indicates that μP-Si@CNT@C is a highly promising anode, with potential applications in future advanced LIBs. It is expected that this work can provide valuable insights for the development of micro-sized Si-based anode materials for high-energy-density LIBs.展开更多
3D hierarchical flowerlike WS_(2) microspheres were synthesized through a facile one-pot hydrothermal route.The as-synthesized samples were characterized by powder X-ray powder diffraction (XRD),energy-dispersive spec...3D hierarchical flowerlike WS_(2) microspheres were synthesized through a facile one-pot hydrothermal route.The as-synthesized samples were characterized by powder X-ray powder diffraction (XRD),energy-dispersive spectroscopy (EDS),scanning electron microscopy (SEM) and Raman.SEM images of the samples reveal that the hierarchical flowerlike WS_(2) microspheres with diameters of about 3-5μm are composed of a number of curled nanosheets.Electrochemical tests such as charge/discharge,cyclic voltammetry,cycle life and rate performance were carried out on the WS_(2) sample.As an anode material for lithium-ion batteries,hierarchical flowerlike WS_(2) microspheres show excellent electrochemical performance.At a current density of100 mA·g^(-1),a high specific capacity of 647.8 mA·h·g^(-1) was achieved after 120 discharge/charge cycles.The excellent electrochemical performance of WS_(2) as an anode material for lithium-ion batteries can be attributed to its special 3D hierarchical structure.展开更多
基金supported by the National Natural Science Foundation of China(No.U20A20310 and No.52176199)sponsored by the Program of Shanghai Academic/Technology Research Leader(No.22XD1423800)。
文摘Thermal runaway(TR)is a critical issue hindering the large-scale application of lithium-ion batteries(LIBs).Understanding the thermal safety behavior of LIBs at the cell and module level under different state of charges(SOCs)has significant implications for reinforcing the thermal safety design of the lithium-ion battery module.This study first investigates the thermal safety boundary(TSB)correspondence at the cells and modules level under the guidance of a newly proposed concept,safe electric quantity boundary(SEQB).A reasonable thermal runaway propagation(TRP)judgment indicator,peak heat transfer power(PHTP),is proposed to predict whether TRP occurs.Moreover,a validated 3D model is used to quantitatively clarify the TSB at different SOCs from the perspective of PHTP,TR trigger temperature,SOC,and the full cycle life.Besides,three different TRP transfer modes are discovered.The interconversion relationship of three different TRP modes is investigated from the perspective of PHTP.This paper explores the TSB of LIBs under different SOCs at both cell and module levels for the first time,which has great significance in guiding the thermal safety design of battery systems.
基金supported by an Australian Government Research Training Program Scholarship offered to the first author of this study。
文摘Anticipating the imminent surge of retired lithium-ion batteries(R-LIBs)from electric vehicles,the need for safe,cost-effective and environmentally friendly disposal technologies has escalated.This paper seeks to offer a comprehensive overview of the entire disposal framework for R-LIBs,encompassing a broad spectrum of activities,including screening,repurposing and recycling.Firstly,we delve deeply into a thorough examination of current screening technologies,shifting the focus from a mere enumeration of screening methods to the exploration of the strategies for enhancing screening efficiency.Secondly,we outline battery repurposing with associated key factors,summarizing stationary applications and sizing methods for R-LIBs in their second life.A particular light is shed on available reconditioning solutions,demonstrating their great potential in facilitating battery safety and lifetime in repurposing scenarios and identifying their techno-economic issues.In the realm of battery recycling,we present an extensive survey of pre-treatment options and subsequent material recovery technologies.Particularly,we introduce several global leading recyclers to illustrate their industrial processes and technical intricacies.Furthermore,relevant challenges and evolving trends are investigated in pursuit of a sustainable end-of-life management and disposal framework.We hope that this study can serve as a valuable resource for researchers,industry professionals and policymakers in this field,ultimately facilitating the adoption of proper disposal practices.
文摘Lithium-ion batteries have extensive usage in various energy storage needs,owing to their notable benefits of high energy density and long lifespan.The monitoring of battery states and failure identification are indispensable for guaranteeing the secure and optimal functionality of the batteries.The impedance spectrum has garnered growing interest due to its ability to provide a valuable understanding of material characteristics and electrochemical processes.To inspire further progress in the investigation and application of the battery impedance spectrum,this paper provides a comprehensive review of the determination and utilization of the impedance spectrum.The sources of impedance inaccuracies are systematically analyzed in terms of frequency response characteristics.The applicability of utilizing diverse impedance features for the diagnosis and prognosis of batteries is further elaborated.Finally,challenges and prospects for future research are discussed.
基金supported by the National Natural Science Foundation of China(52177217)。
文摘Typical application scenarios,such as vehicle to grid(V2G)and frequency regulation,have imposed significant long-life demands on lithium-ion batteries.Herein,we propose an advanced battery life-extension method employing bidirectional pulse charging(BPC)strategy.Unlike traditional constant current charging methods,BPC strategy not only achieves comparable charging speeds but also facilitates V2G frequency regulation simultaneously.It significantly enhances battery cycle ampere-hour throughput and demonstrates remarkable life extension capabilities.For this interesting conclusion,adopting model identification and postmortem characterization to reveal the life regulation mechanism of BPC:it mitigates battery capacity loss attributed to loss of lithium-ion inventory(LLI)in graphite anodes by intermittently regulating the overall battery voltage and anode potential using a negative charging current.Then,from the perspective of internal side reaction,the life extension mechanism is further revealed as inhibition of solid electrolyte interphase(SEI)and lithium dendrite growth by regulating voltage with a bidirectional pulse current,and a semi-empirical life degradation model combining SEI and lithium dendrite growth is developed for BPC scenarios health management,the model parameters are identified by genetic algorithm with the life simulation exhibiting an accuracy exceeding 99%.This finding indicates that under typical rate conditions,adaptable BPC strategies can extend the service life of LFP battery by approximately 123%.Consequently,the developed advanced BPC strategy offers innovative perspectives and insights for the development of long-life battery applications in the future.
基金the National Research Foundation of Korea(Nos.2018R1A5A7023490 and 2022R1A2C1003003)。
文摘A chemo-mechanical model is developed to investigate the effects on the stress development of the coating of polycrystalline Ni-rich LiNixMnyCo_(z)O_(2)(x≥0.8)(NMC)particles with poly(3,4-ethylenedioxythiophene)(PEDOT).The simulation results show that the coating of primary NMC particles significantly reduces the stress generation by efficiently accommodating the volume change associated with the lithium diffusion,and the coating layer plays roles both as a cushion against the volume change and a channel for the lithium transport,promoting the lithium distribution across the secondary particles more homogeneously.Besides,the lower stiffness,higher ionic conductivity,and larger thickness of the coating layer improve the stress mitigation.This paper provides a mathematical framework for calculating the chemo-mechanical responses of anisotropic electrode materials and fundamental insights into how the coating of NMC active particles mitigates stress levels.
基金financially supported by the National Natural Science Foundation of China(No.51904250)the China Postdoctoral Science Foundation(No.2021M692254)+2 种基金the Sichuan Science and Technology Program(No.2022YFG0098)the Fundamental Research Funds for the Central Universities(Nos.2021CDSN-02,2022SCU12002,2022CDZG-17,2022CDSN-08,2022CDZG-9)the Hohhot Science and Technology Program(No.2023-Jie Bang Gua Shuai-Gao-3)。
文摘Mn-rich LiFe_(1-x)Mn_(x)PO_(4)(x>0.5),which combines the high operation voltage of LiMnPO_(4)with excellent rate performa nce of LiFePO4,is hindered by its sluggish kinetic properties.Herein,thermodynamic equilibrium analysis of Mn^(2+)-Fe^(2+)-Mg^(2+)-C_(2)O_(4)^(2-)-H_(2)O system is used to guide the design and preparation of insitu Mg-doped(Fe_(0.4)Mn_(0.6))_(1-x)Mg_(x)C_(2)O_(4)intermediate,which is then employed as an innovative precursor to synthesize high-performance Mg-doped LiFe_(0.4)Mn_(0.6)PO_(4).It indicates that the metal ions with a high precipitation efficiency and the stoichiometric precursors with uniform element distribution can be achieved under the optimized thermodynamic conditions.Meanwhile,accelerated Li+diffusivity and reduced charge transfer resistance originating from Mg doping are verified by various kinetic characterizations.Benefiting from the contributions of inherited homogeneous element distribution,small particle size,uniform carbon layer coating,enhanced Li+migration ability and structural stability induced by Mg doping,the Li(Fe_(0.4)Mn_(0.6))_(0.97)Mg_(0.03)PO_(4)/C exhibits splendid electrochemical performance.
基金supported by the National Natural Science Foundation of China(Grant No.62373224)the Scientific Research Foundation of Nanjing Institute of Technology(Grant No.YKJ202212)+1 种基金the Nanjing Overseas Educated Personnel Science and Technology Innovation Projectthe Open Research Fund of Jiangsu Collaborative Innovation Center for Smart Distribution Network,Nanjing Institute of Technology(Grant No.XTCX202307)。
文摘Lithium-ion batteries are widely recognized as a crucial enabling technology for the advancement of electric vehicles and energy storage systems in the grid.The design of battery state estimation and control algorithms in battery management systems is usually based on battery models,which interpret crucial battery dynamics through the utilization of mathematical functions.Therefore,the investigation of battery dynamics with the purpose of battery system identification has garnered considerable attention in the realm of battery research.Characterization methods in terms of linear and nonlinear response of lithium-ion batteries have emerged as a prominent area of study in this field.This review has undertaken an analysis and discussion of characterization methods,with a particular focus on the motivation of battery system identification.Specifically,this work encompasses the incorporation of frequency domain nonlinear characterization methods and dynamics-based battery electrical models.The aim of this study is to establish a connection between the characterization and identification of battery systems for researchers and engineers specialized in the field of batteries,with the intention of promoting the advancement of efficient battery technology for real-world applications.
基金Bundesministerium für Bildung und Forschung,Grant/Award Numbers:03XP0138C,03XP0306C。
文摘The demand for lithium-ion batteries(LIBs)is driven largely by their use in electric vehicles,which is projected to increase dramatically in the future.This great success,however,urgently calls for the efficient recycling of LIBs at the end of their life.Herein,we describe a froth flotation-based process to recycle graphite—the predominant active material for the negative electrode—from spent LIBs and investigate its reuse in newly assembled LIBs.It has been found that the structure and morphology of the recycled graphite are essentially unchanged compared to pristine commercial anode-grade graphite,and despite some minor impurities from the recycling process,the recycled graphite provides a remarkable reversible specific capacity of more than 350 mAh g^(−1).Even more importantly,newly assembled graphite‖NMC532 cells show excellent cycling stability with a capacity retention of 80%after 1000 cycles,that is,comparable to the performance of reference full cells comprising pristine commercial graphite.
基金funding from the Natural Science Foundation of China(22278150,22075086,22138005,and 22141001)the Guangdong Basic and Applied Basic Research Foundation(2022A1515010980,2023A1515010046)the Fundamental Research Funds for the Central Universities(2022ZYGXZR101).
文摘Separators play a critical role in the safety and performance of lithium-ion batteries.However,commercial polyolefin separators are limited by their poor affinity with electrolytes and low melting points.In this work,we constructed a reinforced-concrete-like structure by homogeneously dispersing nano-Al_(2)O_(3) and cellulose on the separators to improve their stability and performance.In this reinforcedconcrete-like structure,the cellulose is a reinforcing mesh,and the nano-Al_(2)O_(3) acts as concrete to support the separator.After constructing the reinforced-concrete-like structure,the separators exhibit good stability even at 200℃(thermal shrinkage of 0.3%),enhanced tensile strain(tensile stress of 133.4 MPa and tensile strains of 62%),and better electrolyte wettability(a contact angle of 6.5°).Combining these advantages,the cells with nano-Al_(2)O_(3)@cellulose-coated separators exhibit stable cycling performance and good rate performance.Therefore,the construction of the reinforced-concretelike structure is a promising technology to promote the application of lithium-ion batteries in extreme environments.
基金supported by the National Natural Science Foundation of China(22179006)。
文摘Metal-organic frameworks(MOFs)are among the most promising materials for lithium-ion batteries(LIBs)owing to their high surface area,periodic porosity,adjustable pore size,and controllable chemical composition.For instance,their unique porous structures promote electrolyte penetration,ions transport,and make them ideal for battery separators.Regulating the chemical composition of MOF can introduce more active sites for electrochemical reactions.Therefore,MOFs and their related composites have been extensively and thoroughly explored for LIBs.However,the reported reviews solely include the applications of MOFs in the electrode materials of LIBs and rarely involve other aspects.A systematic review of the application of MOFs in LIBs is essential for understanding the mechanism of MOFs and better designing related MOFs battery materials.This review systematically evaluates the latest developments in pristine MOFs and MOF composites for LIB applications,including MOFs as the main materials(anode,cathode,separators,and electrolytes)to auxiliary materials(coating layers and additives for electrodes).Furthermore,the synthesis,modification methods,challenges,and prospects for the application of MOFs in LIBs are discussed.
基金the Technology Innovation Program(or Industrial Strategic Technology Development Program)and the Ministry of Trade,Industry&Energy(MOTIE)of the Republic of Korea(No.20022950)。
文摘The global importance of lithium-ion batteries(LIBs)has been increasingly underscored with the advancement of high-performance energy storage technologies.However,the end-of-life of these batteries poses significant challenges from environmental,economic,and resource management perspectives.This review paper focuses on the pyrometallurgy-based recycling process of lithium-ion batteries,exploring the fundamental understanding of this process and the importance of its optimization.Centering on the high energy consumption and emission gas issues of the pyrometallurgical recycling process,we systematically analyzed the capital-intensive nature of this process and the resulting technological characteristics.Furthermore,we conducted an in-depth discussion on the future research directions to overcome the existing technological barriers and limitations.This review will provide valuable insights for researchers and industry stakeholders in the battery recycling field.
基金supported by the National Natural Science Foundation of China (No.62173281,52377217,U23A20651)Sichuan Science and Technology Program (No.24NSFSC0024,23ZDYF0734,23NSFSC1436)+2 种基金Dazhou City School Cooperation Project (No.DZXQHZ006)Technopole Talent Summit Project (No.KJCRCFH08)Robert Gordon University。
文摘Lithium-ion batteries are the preferred green energy storage method and are equipped with intelligent battery management systems(BMSs)that efficiently manage the batteries.This not only ensures the safety performance of the batteries but also significantly improves their efficiency and reduces their damage rate.Throughout their whole life cycle,lithium-ion batteries undergo aging and performance degradation due to diverse external environments and irregular degradation of internal materials.This degradation is reflected in the state of health(SOH)assessment.Therefore,this review offers the first comprehensive analysis of battery SOH estimation strategies across the entire lifecycle over the past five years,highlighting common research focuses rooted in data-driven methods.It delves into various dimensions such as dataset integration and preprocessing,health feature parameter extraction,and the construction of SOH estimation models.These approaches unearth hidden insights within data,addressing the inherent tension between computational complexity and estimation accuracy.To enha nce support for in-vehicle implementation,cloud computing,and the echelon technologies of battery recycling,remanufacturing,and reuse,as well as to offer insights into these technologies,a segmented management approach will be introduced in the future.This will encompass source domain data processing,multi-feature factor reconfiguration,hybrid drive modeling,parameter correction mechanisms,and fulltime health management.Based on the best SOH estimation outcomes,health strategies tailored to different stages can be devised in the future,leading to the establishment of a comprehensive SOH assessment framework.This will mitigate cross-domain distribution disparities and facilitate adaptation to a broader array of dynamic operation protocols.This article reviews the current research landscape from four perspectives and discusses the challenges that lie ahead.Researchers and practitioners can gain a comprehensive understanding of battery SOH estimation methods,offering valuable insights for the development of advanced battery management systems and embedded application research.
基金supported by the National Natural Science Foundation of China(No.22209027)the Shenzhen Science and Technology Program(No.JCYJ20220530142806015 and No.JCYJ20220818101008018)+1 种基金the Shenzhen“Pengcheng Peacock Program’the Tsinghua SIGS Cross-disciplinary Research and Innovation Fund(No.JC2022002)。
文摘With the rapid development of portable electronics,new energy vehicles,and smart grids,ion batteries are becoming one of the most widely used energy storage devices,while the safety concern of ion batteries has always been an urgent problem to be solved.To develop a safety-guaranteed battery,the characterization of the internal structure is indispensable,where electron microscopy plays a crucial role.Based on this,this paper summarizes the application of transmission electron microscopy(TEM)in battery safety,further concludes and analyzes the aspects of dendrite growth and solid electrolyte interface(SEI)formation that affect the safety of ion batteries,and emphasizes the importance of electron microscopy in battery safety research and the potential of these techniques to promote the future development of this field.These advanced electron microscopy techniques and their prospects are also discussed.
文摘Silicon anodes are promising for use in lithium-ion batteries.However,their practical application is severely limited by their large volume expansion leading to irreversible material fracture and electrical disconnects.This study proposes a new top-down strategy for preparing microsize porous silicon and introduces polyacrylonitrile(PAN)for a nitrogen-doped carbon coating,which is designed to maintain the internal pore volume and lower the expansion of the anode during lithiation and delithiation.We then explore the effect of temperature on the evolution of the structure of PAN and the electrochemical behavior of the composite electrode.After treatment at 400℃,the PAN coating retains a high nitrogen content of 11.35 at%,confirming the presence of C—N and C—O bonds that improve the ionic-electronic transport properties.This treatment not only results in a more intact carbon layer structure,but also introduces carbon defects,and produces a material that has remarkable stable cycling even at high rates.When cycled at 4 A g^(-1),the anode had a specific capacity of 857.6 mAh g^(-1) even after 200 cycles,demonstrating great potential for high-capacity energy storage applications.
基金supported by the National Natural Science Foundation of China(No.62105277)the Natural Science Foundation of Henan Province(No.232300420139)the Internationalization Training of High-Level Talents of Henan Province,and Nanhu Scholars Program for Young Scholars of XYNU.
文摘Al is considered as a promising lithium-ion battery(LIBs)anode materials owing to its high theoretical capacity and appropri-ate lithation/de-lithation potential.Unfortunately,its inevitable volume expansion causes the electrode structure instability,leading to poor cyclic stability.What’s worse,the natural Al2O3 layer on commercial Al pellets is always existed as a robust insulating barrier for elec-trons,which brings the voltage dip and results in low reversible capacity.Herein,this work synthesized core-shell Al@C-Sn pellets for LIBs by a plus-minus strategy.In this proposal,the natural Al2O3 passivation layer is eliminated when annealing the pre-introduced SnCl2,meanwhile,polydopamine-derived carbon is introduced as dual functional shell to liberate the fresh Al core from re-oxidization and alle-viate the volume swellings.Benefiting from the addition of C-Sn shell and the elimination of the Al2O3 passivation layer,the as-prepared Al@C-Sn pellet electrode exhibits little voltage dip and delivers a reversible capacity of 1018.7 mAh·g^(-1) at 0.1 A·g^(-1) and 295.0 mAh·g^(-1) at 2.0 A·g^(-1)(after 1000 cycles),respectively.Moreover,its diffusion-controlled capacity is muchly improved compared to those of its counterparts,confirming the well-designed nanostructure contributes to the rapid Li-ion diffusion and further enhances the lithium storage activity.
基金supported by the National Natural Scientific Foundation of China (22109083,22379014)Beijing Natural Science Foundation (L233004)。
文摘Fast charging is restricted primarily by the risk of lithium(Li)plating,a side reaction that can lead to the rapid capacity decay and dendrite-induced thermal runaway of lithium-ion batteries(LIBs).Investigation on the intrinsic mechanism and the position of Li plating is crucial to improving the fast rechargeability and safety of LIBs.Herein,we investigate the Li plating behavior in porous electrodes under the restricted transport of Li^(+).Based on the theoretical model,it can be concluded that the Li plating on the anodeseparator interface(ASI)is thermodynamically feasible and kinetically advantageous.Meanwhile,the prior deposition of metal Li on the ASI rather than the anode-current collector interface(ACI)is verified experimentally.In order to facilitate the transfer of Li^(+)among the electrode and improve the utilization of active materials without Li plating,a bilayer asymmetric anode composed of graphite and hard carbon(GH)is proposed.Experimental and simulation results suggest that the GH hybrid electrode homogenizes the lithiated-rate throughout the electrode and outperforms the pure graphite electrode in terms of the rate performance and inhibition of Li plating.This work provides new insights into the behavior of Li plating and the rational design of electrode structure.
基金Financial support from Business Finland NextGenBat[grant number 211849]is greatly acknowledged.
文摘This work made use of the Aalto University Otanano-Nanomicroscopy Center and RAMI infrastructures.Financial support from Business Finland NextGenBat[grant number 211849]is greatly acknowledged.The tomography experiment was performed at the beamline ID16B of the European Synchrotron Radiation Facility(ESRF),Grenoble,France,in the frame of proposal CH-6644.The patent titled“Stabilized Positive Electrode Material to Enable High Energy and Power Density Lithium-Ion Batteries”(IPD3173)is pertinent to this manuscript.It was filed by Zahra Ahaliabadeh and Tanja Kallio,and the patent rights are held by Aalto University.
基金This work is supported by the National Natural Science Foundation of China(NSFC,Nos.52176199,and U20A20310)supported by the Program of Shanghai Academic/Technology Research Leader(22XD1423800).
文摘This work extensively investigates the thermal characteristic evolution of lithium-ion batteries under different degradation paths,and the evolution mechanism through multi-angle characterization is revealed.Under different degradation paths,the evolution trend of temperature rise rate remains unchanged with respect to depth of discharge during the adiabatic discharge process,albeit to varying degrees of alteration.The temperature rise rate changes significantly with aging during the adiabatic discharge process under low-temperature cycling and high-rate cycling paths.The total heat generation rate,irreversible heat generation rate,and reversible heat generation rate exhibit similar evolution behavior with aging under different degradation paths.The interval range of endothermic process of reversible electrochemical reactions increases and the contribution of irreversible heat to the total heat increases with aging.To further standardize the assessment of different degradation paths on the thermal characteristics,this work introduces the innovative concept of“Ampere-hour temperature rise”.In low-temperature cycling and high-rate cycling paths,the ampere-hour temperature rise increases significantly with aging,particularly accentuated with higher discharge rates.Conversely,in high-temperature cycling and high-temperature storage paths,the ampere-hour temperature rise remains relatively stable during the initial stages of aging,yet undergoes a notable increase in the later stages of aging.The multi-angle characterization reveals distinct thermal evolution behavior under different degradation paths primarily attributed to different behavior changes of severe side reactions,such as lithium plating.The findings provide crucial insights for the safe utilization and management of lithium–ion batteries throughout the whole lifecycle.
基金financial support from National Natural Science Foundation of China(Nos.52202309 and 22479074)Qing Lan Project of Jiangsu Province,the Open Program of State Key Laboratory of Coordination Chemistry(No.SKLCC2308)the Scientific and Technological Innovation Special Fund for Carbon Peak and Carbon Neutrality of Jiangsu Province(No.BK20220008).
文摘Compared to nanostructured Si/C materials, micro-sized Si/C anodes for lithium-ion batteries (LIBs) have gained significant attention in recent years due to their higher volumetric energy density, reduced side reactions and low costs. However, they suffer from more severe volume expansion effects, making the construction of stable micro-sized Si/C anode materials crucial. In this study, we proposed a simple wet chemistry method to obtain porous micro-sized silicon (μP-Si) from waste AlSi alloys. Then, the μP-Si@carbon nanotubes (CNT)@C composite anode with high tap density was prepared by wrapping with CNT and coated with polyvinylpyrrolidone (PVP)-derived carbon. Electrochemical tests and finite element (FEM) simulations revealed that the introduction of CNTs and PVP-derived carbon synergistically optimize the stability and overall performance of the μP-Si electrode via construction of tough composite interface networks. As an anode material for LIBs, the μP-Si@CNT@C electrode exhibits boosted reversible capacity (∼ 3500 mAh·g^(−1) at 0.2 A·g^(−1)), lifetime and rate performance compared to pure μP-Si. Further full cell assembly and testing also indicates that μP-Si@CNT@C is a highly promising anode, with potential applications in future advanced LIBs. It is expected that this work can provide valuable insights for the development of micro-sized Si-based anode materials for high-energy-density LIBs.
基金Funded by the Jiangsu Province Industry-University-Research Cooperation Project (No.BY2018314)the Scientific Research Foundation of Jiangsu University of Technology (No.KYY18030)Jiangsu Overseas Visiting Scholar Program for University Prominent Young&Middle-aged Teachers and Presidents。
文摘3D hierarchical flowerlike WS_(2) microspheres were synthesized through a facile one-pot hydrothermal route.The as-synthesized samples were characterized by powder X-ray powder diffraction (XRD),energy-dispersive spectroscopy (EDS),scanning electron microscopy (SEM) and Raman.SEM images of the samples reveal that the hierarchical flowerlike WS_(2) microspheres with diameters of about 3-5μm are composed of a number of curled nanosheets.Electrochemical tests such as charge/discharge,cyclic voltammetry,cycle life and rate performance were carried out on the WS_(2) sample.As an anode material for lithium-ion batteries,hierarchical flowerlike WS_(2) microspheres show excellent electrochemical performance.At a current density of100 mA·g^(-1),a high specific capacity of 647.8 mA·h·g^(-1) was achieved after 120 discharge/charge cycles.The excellent electrochemical performance of WS_(2) as an anode material for lithium-ion batteries can be attributed to its special 3D hierarchical structure.