This paper investigates the three-dimensional crack propagation and damage evolution process of metallic column shells under internal explosive loading.The calibration of four typical failure parameters for 40CrMnSiB ...This paper investigates the three-dimensional crack propagation and damage evolution process of metallic column shells under internal explosive loading.The calibration of four typical failure parameters for 40CrMnSiB steel was conducted through experiments and subsequently applied to simulations.The numerical simulation results employing the four failure criteria were compared with the differences and similarities observed in freeze-recovery tests and ultra-high-speed tests.This analysis addressed the critical issue of determining failure criteria for the fracture of a metal shell under internal explosive loads.Building upon this foundation,the damage parameter D_(c),linked to the cumulative crack density,was defined based on the evolution characteristics of a substantial number of cracks.The relationship between the damage parameter and crack velocity over time was established,and the influence of the internal central pressure on the damage parameter and crack velocity was investigated.Variations in the fracture modes were found under different failure criteria,with the principal strain failure criterion proving to be the most effective for simulating 3D crack propagation in a pure shear fracture mode.Through statistical analysis of the shell penetration fracture radius data,it was determined that the fracture radius remained essentially constant during the crack evolution process and could be considered a constant.The propagation velocity of axial cracks ranged between 5300 m/s and 12600 m/s,surpassing the Rayleigh wave velocity of the shell material and decreasing linearly with time.The increase in shell damage exhibited an initial rapid phase,followed by deceleration,demonstrating accelerated damage during the propagation stage of the blast wave and decelerated damage after the arrival of the rarefaction wave.This study provides an effective approach for investigating crack propagation and damage evolution.The derived crack propagation and damage evolution law serves as a valuable reference for the development of crack velocity theory and the construction of shell damage evolution modes.展开更多
Reactive Materials(RMs),a new material with structural and energy release characteristics under shockinduced chemical reactions,are promising in extensive applications in national defense and military fields.They can ...Reactive Materials(RMs),a new material with structural and energy release characteristics under shockinduced chemical reactions,are promising in extensive applications in national defense and military fields.They can increase the lethality of warheads due to their dual functionality.This paper focuses on the energy release characteristics of RM casings prepared by alloy melting and casting process under explosive loading.Explosion experiments of RM and conventional 2A12 aluminum alloy casings were conducted in free field to capture the explosive fireballs,temperature distribution,peak overpressure of the air shock wave and the fracture morphology of fragments of reactive material(RM)warhead casings by using high-speed camera,infrared thermal imager temperature and peak overpressure testing and scanning electron microscope.Results showed that an increase of both the fireball temperature and air shock wave were observed in all RM casings compared to conventional 2A12 aluminum ally casings.The RM casings can improve the peak overpressure of the air shock wave under explosion loading,though the results are different with different charge ratios.According to the energy release characteristics of the RM,increasing the thickness of RM casings will increase the peak overpressure of the near-field air shock wave,while reducing the thickness will increase the peak overpressure of the far-field air shock wave.展开更多
Non-cylindrical casings filled with explosives have undergone rapid development in warhead design and explosion control.The fragment spatial distribution of prismatic casings is more complex than that of traditional c...Non-cylindrical casings filled with explosives have undergone rapid development in warhead design and explosion control.The fragment spatial distribution of prismatic casings is more complex than that of traditional cylindrical casings.In this study,numerical and experimental investigations into the fragment spatial distribution of a prismatic casing were conducted.A new numerical method,which adds the Lagrangian marker points to the Eulerian grid,was proposed to track the multi-material interfaces and material dynamic fractures.Physical quantity mappings between the Lagrangian marker points and Eulerian grid were achieved by their topological relationship.Thereafter,the fragment spatial distributions of the prismatic casing with different fragment sizes,fragment shapes,and casing geometries were obtained using the numerical method.Moreover,fragment spatial distribution experiments were conducted on the prismatic casing with different fragment sizes and shapes,and the experimental data were compared with the numerical results.The effects of the fragment and casing geometry on the fragment spatial distributions were determined by analyzing the numerical results and experimental data.Finally,a formula including the casing geometry parameters was fitted to predict the fragment spatial distribution of the prismatic casing under internal explosive loading.展开更多
The grisliness after-effects can be induced by explosion accident with the collapsing of the structures, the demolishing of the equipments and the casualty of the human beings. Isolation belt constructed between the b...The grisliness after-effects can be induced by explosion accident with the collapsing of the structures, the demolishing of the equipments and the casualty of the human beings. Isolation belt constructed between the blast point and the construction is one of the useful design schemes for blast resistance. The nonlinear procedure ANSYS/LSDYNA970 is used to simulate the contact detonation and the isolation belt of blast resistance filled with the air or water respectively. The results indicate that the maximal damage can be caused by the contact detonation, and the isolation belt of blast resistent filled with water can reduce the damage greatly.展开更多
This paper puts forward using high-pressure water jet technology to control rock burst in roadway, and analyzes the theory of controlling rock burst in roadway by the weak structure zone model. The weak structure zone...This paper puts forward using high-pressure water jet technology to control rock burst in roadway, and analyzes the theory of controlling rock burst in roadway by the weak structure zone model. The weak structure zone is formed by using high-pressure water jet to cut the coal wall in a continuous and rotational way. In order to study the influence law of weak structure zone in surrounding rock, this paper numerically analyzed the influence law of weak structure zone, and the disturbance law of coal wall and floor under dynamic and static combined load. The results show that when the distance between high-pressure water jet drillings is 3 m and the diameter of drilling is 300 mm, continuous stress superposition zone can be formed. The weak structure zone can transfer and reduce the concentrated static load in surrounding rock, and then form distressed zone. The longer the high-pressure water jet drilling is, the larger the distressed zone is. The stress change and displacement change of non-distressed zone in coal wall and floor are significantly greater than that of distressed zone under dynamic and static combined load. And it shows that the distressed zone can effectively control rock burst in roadway under dynamic and static combined load. High-pressure water jet technology was applied in the haulage gate of 250203 working face in Yanbei Coal Mine, and had gained good effect. The study conclusions provide theoretical foundation and a new guidance for controlling rock burst in roadway.展开更多
Rock bolts are one of the primary support systems utilized in underground excavations within the civil and mining engineering industries. Rock bolts support the weakened rock mass adjacent to the opening of an excavat...Rock bolts are one of the primary support systems utilized in underground excavations within the civil and mining engineering industries. Rock bolts support the weakened rock mass adjacent to the opening of an excavation by fastening to the more stable, undisturbed formations further from the excavation. The overall response of such a support element has been determined under varying loading conditions in the laboratory and in situ experiments in the past four decades; however, due to the limitations with conventional monitoring methods of capturing strain, there still exists a gap in knowledge associated with an understanding of the geomechanical responses of rock bolts at the microscale. In this paper, we try to address this current gap in scientific knowledge by utilizing a newly developed distributed optical strain sensing(DOS) technology that provides an exceptional spatial resolution of 0.65 mm to capture the strain along the rock bolt. This DOS technology utilizes Rayleigh optical frequency domain reflectometry(ROFDR) which provides unprecedented insight into various mechanisms associated with axially loaded rebar specimens of different embedment lengths, grouting materials, borehole annulus conditions, and borehole diameters. The embedment length of the specimens was found to be the factor that significantly affected the loading of the rebar. The critical embedment length for the fully grouted rock bolts(FGRBs) was systematically determined to be430 mm. The results herein highlight the effects of the variation of these individual parameters on the geomechanical responses FGRBs.展开更多
In order to predict the extreme load of the mechanical components during the entire life,an automatic method based on the bootstrapping technology(BT)is proposed to determine the most suitable threshold.Based on all t...In order to predict the extreme load of the mechanical components during the entire life,an automatic method based on the bootstrapping technology(BT)is proposed to determine the most suitable threshold.Based on all the turning points of the load history and a series of thresholds estimated in advance,the generalized Pareto distribution is established to fit the exceedances.The corresponding distribution parameters are estimated with the maximum likelihood method.Then,BT is employed to calculate the mean squared error(MSE)of each estimated threshold based on the exceedances and the specific distribution parameters.Finally,the threshold with the smallest MSE will be the optimal one.Compared to the kurtosis method and the mean excess function method,the average deviation of the probability density function of exceedances determined by BT reduces by 38.52%and 29.25%,respectively.Moreover,the quantile-quantile plot of the exceedances determined by BT is closer to a straight line.The results suggest the improvement of the modeling flexibility and the determined threshold precision.If the exceedances are insufficient,BT will enlarge their amount by resampling to solve the instability problem of the original distribution parameters.展开更多
Based on the features and requirements of gas drainage system, an optimized explosion resistance technology is done after a comprehensive analysis and research about the triple IR (Infrared Ray) flame detection tech...Based on the features and requirements of gas drainage system, an optimized explosion resistance technology is done after a comprehensive analysis and research about the triple IR (Infrared Ray) flame detection technology, explosion resistance valve technology and explosion resistance control technology. An intelligent PLC (Programmable Logic Controller) resistance control system is designed which can cut offthe gas branch quickly and accurately, and the controller have automatic pressure maintaining function, valve rotation limit function, remote and local control interlock function. The reliability and rationality of explosion resistance technology is verified by gas pipeline explosion propagation and resistance simulation test. Overall response time of explosion resistance system is less than 100ms, and the spread of fire in gas pipeline can be prevented effectively.展开更多
A hardware-in-the-loop (HWIL) simulator for gun servo system is described in this paper, and its load modeling technologies,such as road spectrum model,sea wave model are studied. The simulation results show that the ...A hardware-in-the-loop (HWIL) simulator for gun servo system is described in this paper, and its load modeling technologies,such as road spectrum model,sea wave model are studied. The simulation results show that the models can be used in HWIL and satisfy the requirements of hardware-in-the-loop simulator of gun servo system.展开更多
This paper mainly introduces the scientific cutting and hoisting construction technology before the large spherical tank(hereinafter referred to as spherical tank)moving and loading,so as to better ensure the construc...This paper mainly introduces the scientific cutting and hoisting construction technology before the large spherical tank(hereinafter referred to as spherical tank)moving and loading,so as to better ensure the construction quality of field assembly and welding in the process of spherical tank moving and loading.展开更多
As the protective component,steel plate had attracted extensive attention because of frequently threats of explosive loads.In this paper,the evolution of microstructure and the mechanism of damage in the quasi-crackin...As the protective component,steel plate had attracted extensive attention because of frequently threats of explosive loads.In this paper,the evolution of microstructure and the mechanism of damage in the quasi-cracking area of steel plate subjected to explosive load were discussed and the relationships between micro defects and dynamic mechanical response were revealed.After the explosion experiment,five observation points were selected equidistant from the quasi-cracking area of the section of the steel plate along the thickness direction,and the characteristics of micro defects at the observation points were analyzed by optical microscope(OM),scanning electron microscope(SEM) and electron backscattered diffraction(EBSD).The observation result shows that many slip bands(SBs) appeared,and the grain orientation changed obviously in the steel plate,the two were the main damage types of micro defects.In addition,cracks,peeling pits,grooves and other lager micro defects were appeared in the lower area of the plate.The stress parameters of the observation points were obtained through an effective numerical model.The mechanism of damage generation and crack propagation in the quasicracking area were clarified by comparing the specific impulse of each observation point with the corresponding micro defects.The result shows that the generation and expansion of micro defects are related to the stress area(i.e.the upper compression area,the neutral plane area,and the lower tension area).The micro defects gather and expand at the grain boundary,and will become macroscopic damage under the continuous action of tensile stress.Besides,the micro defects at the midpoint of the section of the steel plate in the direction away from the explosion center(i.e.the horizontal direction) were also studied.It was found that the specific impulse at these positions were much smaller than that in the thickness direction,the micro defects were only SBs and a few micro cracks,and the those decreased with the increase of the distance from the explosion center.展开更多
As the basic protective element, steel plate had attracted world-wide attention because of frequent threats of explosive loads. This paper reports the relationships between microscopic defects of Q345 steel plate unde...As the basic protective element, steel plate had attracted world-wide attention because of frequent threats of explosive loads. This paper reports the relationships between microscopic defects of Q345 steel plate under the explosive load and its macroscopic dynamics simulation. Firstly, the defect characteristics of the steel plate were investigated by stereoscopic microscope(SM) and scanning electron microscope(SEM). At the macroscopic level, the defect was the formation of cave which was concentrated in the range of 0-3.0 cm from the explosion center, while at the microscopic level, the cavity and void formation were the typical damage characteristics. It also explains that the difference in defect morphology at different positions was the combining results of high temperature and high pressure. Secondly, the variation rules of mechanical properties of steel plate under explosive load were studied. The Arbitrary Lagrange-Euler(ALE) algorithm and multi-material fluid-structure coupling method were used to simulate the explosion process of steel plate. The accuracy of the method was verified by comparing the deformation of the simulation results with the experimental results, the pressure and stress at different positions on the surface of the steel plate were obtained. The simulation results indicated that the critical pressure causing the plate defects may be approximately 2.01 GPa. On this basis, it was found that the variation rules of surface pressure and microscopic defect area of the Q345 steel plate were strikingly similar, and the corresponding mathematical relationship between them was established. Compared with Monomolecular growth fitting models(MGFM) and Logistic fitting models(LFM), the relationship can be better expressed by cubic polynomial fitting model(CPFM). This paper illustrated that the explosive defect characteristics of metal plate at the microscopic level can be explored by analyzing its macroscopic dynamic mechanical response.展开更多
An FAE (Fuel Air Explosives) device is used to develop a numerical and theoretical analysis of a thin cylindrical shell with inner explosive loading. The dynamic fracture process is simulated numerically in the DYNA...An FAE (Fuel Air Explosives) device is used to develop a numerical and theoretical analysis of a thin cylindrical shell with inner explosive loading. The dynamic fracture process is simulated numerically in the DYNA3D program using the finite element method. The material’s dynamic properties are described by a strain hardening viscoplastic constitution. A damage variable is introduced in the determination of the dynamic fracture criterion. Final rupture of structure is decided by a rupture strain criterion which is deduced in terms of a critical damage variable. The numerical results have been compared with theoretical solutions.展开更多
The failure behavior of metal materials under strong dynamic loading such as explosive and impact loading has important applications in the fields of defense industry and civil security. In this study, a novel coupled...The failure behavior of metal materials under strong dynamic loading such as explosive and impact loading has important applications in the fields of defense industry and civil security. In this study, a novel coupled bidirectional weighted mapping method between Lagrange particles and Euler meshes is proposed to numerically simulate the dynamic response and failure process of steel structure under explosive loading. In this method, the Lagrange particles and Euler meshes are used to describe the materials that need to be accurately tracked and can more accurately characterize the deformation history and failure process of the material. A comparison between the numerical results and experimental data shows that this method can be used to solve large deformation problem of multi-medium materials and the failure problems of complex structures under strong impact loading.展开更多
To pursue VNIIEF–VNIITF joint investigations,this paper briefly describes the experimental setup and provides numerical 3D-computation results(LEGAK-3D technique)on special features in the convergence dynamics of st...To pursue VNIIEF–VNIITF joint investigations,this paper briefly describes the experimental setup and provides numerical 3D-computation results(LEGAK-3D technique)on special features in the convergence dynamics of steel shells under their quasi-spherical explosive loading in the system with the 40-mm outer radius of the explosive layer.The computation results were compared with the data experimentally registered for shells of the 30KhGSA steel,both as-received and quenched to HRC 35...40,and the austenitic 12Kh18N10T stainless steel.The comparison was also made with laserinterferometry results obtained directly under explosive loading,as well as with gammatomography and scanning electron microscopy investigations of the recovered shells.展开更多
The double casing warhead with sandwiched charge is a novel fragmentation warhead that can produce two groups of fragments with different velocity,and the previous work has presented a calculation formula to determine...The double casing warhead with sandwiched charge is a novel fragmentation warhead that can produce two groups of fragments with different velocity,and the previous work has presented a calculation formula to determine the maximum fragment velocity.The current work builds on the published formula to further develop a formula for calculating the axial distribution characteristics of the fragment velocity.For this type of warhead,the simulation of the dispersion characteristics of the detonation products at different positions shows that the detonation products at the ends have a much larger axial velocity than those in the middle,and the detonation products have a greater axial dispersion velocity when they are closer to the central axis.The loading process and the fragment velocity vary with the axial position for both casing layers,and the total velocity of the fragments is the vector sum of the radial velocity and the axial velocity.At the same axial position,the acceleration time of the inner casing is greater than that of the outer casing.For the same casing,the fragments generated at the ends have a longer acceleration time than the fragments from the middle.The proposed formula is validated with the X-ray radiography results of the four warheads previously tested experimentally and the 3D smoothedparticle hydrodynamics numerical simulation results of several series of new warheads with different configurations.The formula can accurately and reliably calculate the fragment velocity when the lengthto-diameter ratio of the charge is greater than 1.5 and the thickness of the casing is less than 20%its inner radius.This work thus provides a key reference for the theoretical analysis and the design of warheads with multiple casings.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.12302437)Natural Science Foundation of Jiangsu Province (BK20230939)China Postdoctoral Science Foundation (2021M701710)。
文摘This paper investigates the three-dimensional crack propagation and damage evolution process of metallic column shells under internal explosive loading.The calibration of four typical failure parameters for 40CrMnSiB steel was conducted through experiments and subsequently applied to simulations.The numerical simulation results employing the four failure criteria were compared with the differences and similarities observed in freeze-recovery tests and ultra-high-speed tests.This analysis addressed the critical issue of determining failure criteria for the fracture of a metal shell under internal explosive loads.Building upon this foundation,the damage parameter D_(c),linked to the cumulative crack density,was defined based on the evolution characteristics of a substantial number of cracks.The relationship between the damage parameter and crack velocity over time was established,and the influence of the internal central pressure on the damage parameter and crack velocity was investigated.Variations in the fracture modes were found under different failure criteria,with the principal strain failure criterion proving to be the most effective for simulating 3D crack propagation in a pure shear fracture mode.Through statistical analysis of the shell penetration fracture radius data,it was determined that the fracture radius remained essentially constant during the crack evolution process and could be considered a constant.The propagation velocity of axial cracks ranged between 5300 m/s and 12600 m/s,surpassing the Rayleigh wave velocity of the shell material and decreasing linearly with time.The increase in shell damage exhibited an initial rapid phase,followed by deceleration,demonstrating accelerated damage during the propagation stage of the blast wave and decelerated damage after the arrival of the rarefaction wave.This study provides an effective approach for investigating crack propagation and damage evolution.The derived crack propagation and damage evolution law serves as a valuable reference for the development of crack velocity theory and the construction of shell damage evolution modes.
基金the Fundamental Research Funds for the Central Universities(No.30920021108)Open Foundation of Hypervelocity Impact Research Center of CARDC(20200106).
文摘Reactive Materials(RMs),a new material with structural and energy release characteristics under shockinduced chemical reactions,are promising in extensive applications in national defense and military fields.They can increase the lethality of warheads due to their dual functionality.This paper focuses on the energy release characteristics of RM casings prepared by alloy melting and casting process under explosive loading.Explosion experiments of RM and conventional 2A12 aluminum alloy casings were conducted in free field to capture the explosive fireballs,temperature distribution,peak overpressure of the air shock wave and the fracture morphology of fragments of reactive material(RM)warhead casings by using high-speed camera,infrared thermal imager temperature and peak overpressure testing and scanning electron microscope.Results showed that an increase of both the fireball temperature and air shock wave were observed in all RM casings compared to conventional 2A12 aluminum ally casings.The RM casings can improve the peak overpressure of the air shock wave under explosion loading,though the results are different with different charge ratios.According to the energy release characteristics of the RM,increasing the thickness of RM casings will increase the peak overpressure of the near-field air shock wave,while reducing the thickness will increase the peak overpressure of the far-field air shock wave.
基金supported by the National Natural Science Foundation of China(Grant No.11822203and 11702026)。
文摘Non-cylindrical casings filled with explosives have undergone rapid development in warhead design and explosion control.The fragment spatial distribution of prismatic casings is more complex than that of traditional cylindrical casings.In this study,numerical and experimental investigations into the fragment spatial distribution of a prismatic casing were conducted.A new numerical method,which adds the Lagrangian marker points to the Eulerian grid,was proposed to track the multi-material interfaces and material dynamic fractures.Physical quantity mappings between the Lagrangian marker points and Eulerian grid were achieved by their topological relationship.Thereafter,the fragment spatial distributions of the prismatic casing with different fragment sizes,fragment shapes,and casing geometries were obtained using the numerical method.Moreover,fragment spatial distribution experiments were conducted on the prismatic casing with different fragment sizes and shapes,and the experimental data were compared with the numerical results.The effects of the fragment and casing geometry on the fragment spatial distributions were determined by analyzing the numerical results and experimental data.Finally,a formula including the casing geometry parameters was fitted to predict the fragment spatial distribution of the prismatic casing under internal explosive loading.
文摘The grisliness after-effects can be induced by explosion accident with the collapsing of the structures, the demolishing of the equipments and the casualty of the human beings. Isolation belt constructed between the blast point and the construction is one of the useful design schemes for blast resistance. The nonlinear procedure ANSYS/LSDYNA970 is used to simulate the contact detonation and the isolation belt of blast resistance filled with the air or water respectively. The results indicate that the maximal damage can be caused by the contact detonation, and the isolation belt of blast resistent filled with water can reduce the damage greatly.
基金supported by the National Natural Science Foundation of China (Nos. 51574243, 51404269)the Fundamental Research Funds for the Central Universities of China (No. 2014XT01)+1 种基金Guizhou Science and Technology Foundation of China (No. 20152072)the Priority Academic Program Development of Jiangsu Higher Education Institutions, China (No. SZBF2011-6B35)
文摘This paper puts forward using high-pressure water jet technology to control rock burst in roadway, and analyzes the theory of controlling rock burst in roadway by the weak structure zone model. The weak structure zone is formed by using high-pressure water jet to cut the coal wall in a continuous and rotational way. In order to study the influence law of weak structure zone in surrounding rock, this paper numerically analyzed the influence law of weak structure zone, and the disturbance law of coal wall and floor under dynamic and static combined load. The results show that when the distance between high-pressure water jet drillings is 3 m and the diameter of drilling is 300 mm, continuous stress superposition zone can be formed. The weak structure zone can transfer and reduce the concentrated static load in surrounding rock, and then form distressed zone. The longer the high-pressure water jet drilling is, the larger the distressed zone is. The stress change and displacement change of non-distressed zone in coal wall and floor are significantly greater than that of distressed zone under dynamic and static combined load. And it shows that the distressed zone can effectively control rock burst in roadway under dynamic and static combined load. High-pressure water jet technology was applied in the haulage gate of 250203 working face in Yanbei Coal Mine, and had gained good effect. The study conclusions provide theoretical foundation and a new guidance for controlling rock burst in roadway.
基金Natural Sciences and Engineering Council of Canada(NSERC)the Canadian Department of National Defense+2 种基金MITACSYield Point Inc.the Royal Military College(RMC) Green Team
文摘Rock bolts are one of the primary support systems utilized in underground excavations within the civil and mining engineering industries. Rock bolts support the weakened rock mass adjacent to the opening of an excavation by fastening to the more stable, undisturbed formations further from the excavation. The overall response of such a support element has been determined under varying loading conditions in the laboratory and in situ experiments in the past four decades; however, due to the limitations with conventional monitoring methods of capturing strain, there still exists a gap in knowledge associated with an understanding of the geomechanical responses of rock bolts at the microscale. In this paper, we try to address this current gap in scientific knowledge by utilizing a newly developed distributed optical strain sensing(DOS) technology that provides an exceptional spatial resolution of 0.65 mm to capture the strain along the rock bolt. This DOS technology utilizes Rayleigh optical frequency domain reflectometry(ROFDR) which provides unprecedented insight into various mechanisms associated with axially loaded rebar specimens of different embedment lengths, grouting materials, borehole annulus conditions, and borehole diameters. The embedment length of the specimens was found to be the factor that significantly affected the loading of the rebar. The critical embedment length for the fully grouted rock bolts(FGRBs) was systematically determined to be430 mm. The results herein highlight the effects of the variation of these individual parameters on the geomechanical responses FGRBs.
基金The National Science and Technology Pillar Program of China(No.2015BAF07B00)
文摘In order to predict the extreme load of the mechanical components during the entire life,an automatic method based on the bootstrapping technology(BT)is proposed to determine the most suitable threshold.Based on all the turning points of the load history and a series of thresholds estimated in advance,the generalized Pareto distribution is established to fit the exceedances.The corresponding distribution parameters are estimated with the maximum likelihood method.Then,BT is employed to calculate the mean squared error(MSE)of each estimated threshold based on the exceedances and the specific distribution parameters.Finally,the threshold with the smallest MSE will be the optimal one.Compared to the kurtosis method and the mean excess function method,the average deviation of the probability density function of exceedances determined by BT reduces by 38.52%and 29.25%,respectively.Moreover,the quantile-quantile plot of the exceedances determined by BT is closer to a straight line.The results suggest the improvement of the modeling flexibility and the determined threshold precision.If the exceedances are insufficient,BT will enlarge their amount by resampling to solve the instability problem of the original distribution parameters.
文摘Based on the features and requirements of gas drainage system, an optimized explosion resistance technology is done after a comprehensive analysis and research about the triple IR (Infrared Ray) flame detection technology, explosion resistance valve technology and explosion resistance control technology. An intelligent PLC (Programmable Logic Controller) resistance control system is designed which can cut offthe gas branch quickly and accurately, and the controller have automatic pressure maintaining function, valve rotation limit function, remote and local control interlock function. The reliability and rationality of explosion resistance technology is verified by gas pipeline explosion propagation and resistance simulation test. Overall response time of explosion resistance system is less than 100ms, and the spread of fire in gas pipeline can be prevented effectively.
文摘A hardware-in-the-loop (HWIL) simulator for gun servo system is described in this paper, and its load modeling technologies,such as road spectrum model,sea wave model are studied. The simulation results show that the models can be used in HWIL and satisfy the requirements of hardware-in-the-loop simulator of gun servo system.
文摘This paper mainly introduces the scientific cutting and hoisting construction technology before the large spherical tank(hereinafter referred to as spherical tank)moving and loading,so as to better ensure the construction quality of field assembly and welding in the process of spherical tank moving and loading.
基金supported by the Science and Technology Project of Fire Rescue Bureau of Ministry of Emergency Management (Grant No.2022XFZD05)S&T Program of Hebei(Grant No.22375419D)National Natural Science Foundation of China (Grant No.11802160)。
文摘As the protective component,steel plate had attracted extensive attention because of frequently threats of explosive loads.In this paper,the evolution of microstructure and the mechanism of damage in the quasi-cracking area of steel plate subjected to explosive load were discussed and the relationships between micro defects and dynamic mechanical response were revealed.After the explosion experiment,five observation points were selected equidistant from the quasi-cracking area of the section of the steel plate along the thickness direction,and the characteristics of micro defects at the observation points were analyzed by optical microscope(OM),scanning electron microscope(SEM) and electron backscattered diffraction(EBSD).The observation result shows that many slip bands(SBs) appeared,and the grain orientation changed obviously in the steel plate,the two were the main damage types of micro defects.In addition,cracks,peeling pits,grooves and other lager micro defects were appeared in the lower area of the plate.The stress parameters of the observation points were obtained through an effective numerical model.The mechanism of damage generation and crack propagation in the quasicracking area were clarified by comparing the specific impulse of each observation point with the corresponding micro defects.The result shows that the generation and expansion of micro defects are related to the stress area(i.e.the upper compression area,the neutral plane area,and the lower tension area).The micro defects gather and expand at the grain boundary,and will become macroscopic damage under the continuous action of tensile stress.Besides,the micro defects at the midpoint of the section of the steel plate in the direction away from the explosion center(i.e.the horizontal direction) were also studied.It was found that the specific impulse at these positions were much smaller than that in the thickness direction,the micro defects were only SBs and a few micro cracks,and the those decreased with the increase of the distance from the explosion center.
基金Science and Technology Project of Fire Rescue Bureau of Ministry of Emergency Management(Grant No.2022XFZD05)S&T Program of Hebei(Grant No.22375419D)National Natural Science Foundation of China(Grant No.11802160).
文摘As the basic protective element, steel plate had attracted world-wide attention because of frequent threats of explosive loads. This paper reports the relationships between microscopic defects of Q345 steel plate under the explosive load and its macroscopic dynamics simulation. Firstly, the defect characteristics of the steel plate were investigated by stereoscopic microscope(SM) and scanning electron microscope(SEM). At the macroscopic level, the defect was the formation of cave which was concentrated in the range of 0-3.0 cm from the explosion center, while at the microscopic level, the cavity and void formation were the typical damage characteristics. It also explains that the difference in defect morphology at different positions was the combining results of high temperature and high pressure. Secondly, the variation rules of mechanical properties of steel plate under explosive load were studied. The Arbitrary Lagrange-Euler(ALE) algorithm and multi-material fluid-structure coupling method were used to simulate the explosion process of steel plate. The accuracy of the method was verified by comparing the deformation of the simulation results with the experimental results, the pressure and stress at different positions on the surface of the steel plate were obtained. The simulation results indicated that the critical pressure causing the plate defects may be approximately 2.01 GPa. On this basis, it was found that the variation rules of surface pressure and microscopic defect area of the Q345 steel plate were strikingly similar, and the corresponding mathematical relationship between them was established. Compared with Monomolecular growth fitting models(MGFM) and Logistic fitting models(LFM), the relationship can be better expressed by cubic polynomial fitting model(CPFM). This paper illustrated that the explosive defect characteristics of metal plate at the microscopic level can be explored by analyzing its macroscopic dynamic mechanical response.
文摘An FAE (Fuel Air Explosives) device is used to develop a numerical and theoretical analysis of a thin cylindrical shell with inner explosive loading. The dynamic fracture process is simulated numerically in the DYNA3D program using the finite element method. The material’s dynamic properties are described by a strain hardening viscoplastic constitution. A damage variable is introduced in the determination of the dynamic fracture criterion. Final rupture of structure is decided by a rupture strain criterion which is deduced in terms of a critical damage variable. The numerical results have been compared with theoretical solutions.
基金the National Natural Science Foundation of China(Grant No.11902036)the China Postdoctoral Science Foundation(Grant No.2020T130057)。
文摘The failure behavior of metal materials under strong dynamic loading such as explosive and impact loading has important applications in the fields of defense industry and civil security. In this study, a novel coupled bidirectional weighted mapping method between Lagrange particles and Euler meshes is proposed to numerically simulate the dynamic response and failure process of steel structure under explosive loading. In this method, the Lagrange particles and Euler meshes are used to describe the materials that need to be accurately tracked and can more accurately characterize the deformation history and failure process of the material. A comparison between the numerical results and experimental data shows that this method can be used to solve large deformation problem of multi-medium materials and the failure problems of complex structures under strong impact loading.
文摘To pursue VNIIEF–VNIITF joint investigations,this paper briefly describes the experimental setup and provides numerical 3D-computation results(LEGAK-3D technique)on special features in the convergence dynamics of steel shells under their quasi-spherical explosive loading in the system with the 40-mm outer radius of the explosive layer.The computation results were compared with the data experimentally registered for shells of the 30KhGSA steel,both as-received and quenched to HRC 35...40,and the austenitic 12Kh18N10T stainless steel.The comparison was also made with laserinterferometry results obtained directly under explosive loading,as well as with gammatomography and scanning electron microscopy investigations of the recovered shells.
基金supported by the National Natural Science Foundation of China(Grant No.11872121)。
文摘The double casing warhead with sandwiched charge is a novel fragmentation warhead that can produce two groups of fragments with different velocity,and the previous work has presented a calculation formula to determine the maximum fragment velocity.The current work builds on the published formula to further develop a formula for calculating the axial distribution characteristics of the fragment velocity.For this type of warhead,the simulation of the dispersion characteristics of the detonation products at different positions shows that the detonation products at the ends have a much larger axial velocity than those in the middle,and the detonation products have a greater axial dispersion velocity when they are closer to the central axis.The loading process and the fragment velocity vary with the axial position for both casing layers,and the total velocity of the fragments is the vector sum of the radial velocity and the axial velocity.At the same axial position,the acceleration time of the inner casing is greater than that of the outer casing.For the same casing,the fragments generated at the ends have a longer acceleration time than the fragments from the middle.The proposed formula is validated with the X-ray radiography results of the four warheads previously tested experimentally and the 3D smoothedparticle hydrodynamics numerical simulation results of several series of new warheads with different configurations.The formula can accurately and reliably calculate the fragment velocity when the lengthto-diameter ratio of the charge is greater than 1.5 and the thickness of the casing is less than 20%its inner radius.This work thus provides a key reference for the theoretical analysis and the design of warheads with multiple casings.