Herein,ionomer-free amorphous iridium oxide(IrO_(x))thin electrodes are first developed as highly active anodes for proton exchange membrane electrolyzer cells(PEMECs)via low-cost,environmentally friendly,and easily s...Herein,ionomer-free amorphous iridium oxide(IrO_(x))thin electrodes are first developed as highly active anodes for proton exchange membrane electrolyzer cells(PEMECs)via low-cost,environmentally friendly,and easily scalable electrodeposition at room temperature.Combined with a Nafion 117 membrane,the IrO_(x)-integrated electrode with an ultralow loading of 0.075 mg cm^(-2)delivers a high cell efficiency of about 90%,achieving more than 96%catalyst savings and 42-fold higher catalyst utilization compared to commercial catalyst-coated membrane(2 mg cm^(-2)).Additionally,the IrO_(x)electrode demonstrates superior performance,higher catalyst utilization and significantly simplified fabrication with easy scalability compared with the most previously reported anodes.Notably,the remarkable performance could be mainly due to the amorphous phase property,sufficient Ir^(3+)content,and rich surface hydroxide groups in catalysts.Overall,due to the high activity,high cell efficiency,an economical,greatly simplified and easily scalable fabrication process,and ultrahigh material utilization,the IrO_(x)electrode shows great potential to be applied in industry and accelerates the commercialization of PEMECs and renewable energy evolution.展开更多
Oxygenated carbon materials exhibit outstanding electrocatalytic performance in the production of hydrogen peroxide(H2O2)through a two-electron oxygen reduction reaction.The nature of the active functional group and u...Oxygenated carbon materials exhibit outstanding electrocatalytic performance in the production of hydrogen peroxide(H2O2)through a two-electron oxygen reduction reaction.The nature of the active functional group and underlying reaction mechanism,however,remain unclear.Here,a comprehensive workflow was established to identify the active sites from the numerous possible structures.The common hydroxyl group at the notched edge demonstrates a key role in the two-electron process.The local chemical environment weakens the binding of OOH intermediate to substrate while enhancing interaction with solution,thereby promoting the H_(2)O_(2)production.With increasing pH,the intramolecular hydrogen bond between OOH intermediate and hydroxyl decreases,facilitating OOH desorption.Furthermore,the rise in selectivity with increasing potential stems from the suppression of the four-electron process.The active site was further validated through experiments.Guided by theoretical understanding,optimal performance was achieved with high selectivity(>95%)and current density(2.06 mA/cm^(2))in experiment.展开更多
Currently,the energy crisis is the crucial problem faced by the world,and photocatalytic hydrogen(H_(2))production is recognized with a chance to be a standout amongst those guaranteeing results to this issue.For a lo...Currently,the energy crisis is the crucial problem faced by the world,and photocatalytic hydrogen(H_(2))production is recognized with a chance to be a standout amongst those guaranteeing results to this issue.For a long time,photocatalytic H_(2) production has mainly relied on the noble metal cata‐lysts.However,the limitations of noble metals themselves,such as scarcity and high cost,have se‐verely restricted their large‐scale application.Therefore,it is urgent to seek a cheaper,more effi‐cient,and stable catalyst for photocatalytic H_(2) production.Fortunately,the emergence of carbon nanostructured materials(CNMs)has brought dawn.Its excellent structure and semiconductor performance can effectively participate in photocatalytic H_(2) production.CNMs have developed rap‐idly since they appeared in the field of photocatalytic water splitting.Therefore,it is necessary to summarize the latest progress of CNMs promptly for further development.This review introduced the CNMs,including carbon dots,fullerenes,carbon nanotubes,graphene,and graphdiyne,which is a powerful assistant in photocatalytic H_(2) production.CNMs can provide abundant adsorption and active sites,charge separation and transport channels,photocatalysts,co‐catalysts and photosensi‐tizers.Then,this review has introduced the strategy for enhancing CNMs in photocatalytic H_(2) pro‐duction based on recent research.Finally,the challenge faced by CNMs in photocatalytic H_(2) produc‐tion has prospected.展开更多
As an environmentally friendly and high-density energy carrier,hydrogen has been recognized as one of the ideal alternatives for fossil fuels.One of the major challenges faced by“hydrogen economy”is the development ...As an environmentally friendly and high-density energy carrier,hydrogen has been recognized as one of the ideal alternatives for fossil fuels.One of the major challenges faced by“hydrogen economy”is the development of efficient,low-cost,safe and selective hydrogen generation from chemical storage materials.In this review,we summarize the recent advances in hydrogen production via hydrolysis and alcoholysis of light-metal-based materials,such as borohydrides,Mg-based and Al-based materials,and the highly efficient regeneration of borohydrides.Unfortunately,most of these hydrolysable materials are still plagued by sluggish kinetics and low hydrogen yield.While a number of strategies including catalysis,alloying,solution modification,and ball milling have been developed to overcome these drawbacks,the high costs required for the“one-pass”utilization of hydrolysis/alcoholysis systems have ultimately made these techniques almost impossible for practical large-scale applications.Therefore,it is imperative to develop low-cost material systems based on abundant resources and effective recycling technologies of spent fuels for efficient transport,production and storage of hydrogen in a fuel cell-based hydrogen economy.展开更多
In order to investigate detonation propagation characteristics of different charge patterns,the detonation velocities of superposition strip shaped charges made up of a detonating cord and explosives were measured by...In order to investigate detonation propagation characteristics of different charge patterns,the detonation velocities of superposition strip shaped charges made up of a detonating cord and explosives were measured by a detonation velocity measuring instrument under conditions of different ignition.The experimental results and theoretical analysis show that the maximum detonation propagation velocity depends on the explosive materials with the maximum velocity among all the explosive materials.Using detonating cord in a superposition charge can shorten detonation propagation time and improve the efficiency of explosive energy.The measurement method of detonation propagation velocity and experimental results are presented and investigated.展开更多
Coal fly ash(FA),a valuable industrial solid residue generated from coal combustion,is composed of various metal oxides and has a high thermal stability.Given that the coal-based energy will continue to account for a ...Coal fly ash(FA),a valuable industrial solid residue generated from coal combustion,is composed of various metal oxides and has a high thermal stability.Given that the coal-based energy will continue to account for a significant portion of global electricity generation in the coming years,the lack of effective management strategies exacerbates the threat of FA wastes to the surrounding environment and human health.For a sustainable development,green and renewable hydrogen economy and CO_(2)capture efforts provide appealing opportunities to valorize FA as catalysts and/or sorbents due to their appealing physicochemical properties.Hydrogen applications along with carbon neutrality are potential strategies to mitigate climate change crisis,but high processing costs(catalysts/sorbents)are challenging to realize this purpose.In this context,the utilization of FA not only enhances industrial competitiveness(by reducing manufacturing costs),but also provides ecologically friendly approaches to minimizing this solid waste.This state-of-the-art review highlights a wide-ranging outlook on the valorization of FA as catalysts and sorbents for hydrogen-rich gas production via conventional/intensified processes(CO_(2)/H_(2)O reforming,ammonia decomposition,hydride hydrolysis).The fundamental physicochemical characterizations and hazards/utilization of FA,which significantly affect the FA's utilization in various fields,are first introduced.The influence of several factors(like FA types and catalysis/sorption operation conditions)on the activity performance of FA-based materials is then discussed in detail.This critical review aims to open the window to further innovative ideas regarding the application of different FA residues in other catalytic and sorption processes.展开更多
From 1980’s decade,the introduction of carbon composite materials in structural applications has been consistently increased in the successive generations of civil aircraft from Single Aisle to Middle-long Range to a...From 1980’s decade,the introduction of carbon composite materials in structural applications has been consistently increased in the successive generations of civil aircraft from Single Aisle to Middle-long Range to achieve a culminant point with more than 50%in structure weight in recent commercial civil aircraft.This evolution,done through successive iterations,has been possible by combining in the same time the improvement of intrinsic composite material performances and its transformation into prepreg production technologies together with the development of new manufacturing process for material lay-up automation at composite shop-floor manufacturer of aircraft composite parts.New challenges are still coming to continuously develop materials and technologies in order to pursue the production more cost-effective composite parts.Associated to higher aircraft production rate for single aisle,new challenges may force material and aircraft designers and producers to furthermore drive new products and processes introduction and new ways of transformation within in next decade of composite aircraft designs.We propose to illustrate these trends using past and recent developments and our return of experience from Hexcel on Civil Aircraft programs.展开更多
Anthropic methane emissions can largely be prevented or minimized using technologies that are already available. One such technology is anaerobic digestion (AD), which is used commercially around the world, especially...Anthropic methane emissions can largely be prevented or minimized using technologies that are already available. One such technology is anaerobic digestion (AD), which is used commercially around the world, especially in Europe and the United States, where some challenging targets have been set to diversify the energy mix with more renewable energy. This foresight study was designed to identify which technological solutions out of the many options available for biogas production are attracting most interest, for which purpose patent documents and scientific publications were analyzed. The aim is to identify which raw materials are most attractive for AD and biogas production. It was found that the raw materials that have attracted most research and patenting activity are sludge, sewage, and wastewater, livestock waste, and agriculture waste, which together account for 62% of all the patents filed and 74% of all the scientific publications. The countries most engaged in producing biogas from AD plants are China, Germany, and the United States. We also identified a rising trend in the use of biogas around the world, and a steady increase in the number of patents filed on the subject, especially in Japan and South Korea. This growth is driven, amongst other things, by strategic governmental actions, global environmental pacts, and the realization on the part of industry that anaerobic digestion can be used as an efficient method for treating waste and effluents.展开更多
The application of mechanical and chemical syntheses in an high-energy vibration mill of the FESTU makes easy the process of the introduction of reinforced powders in castle composite materials on the Al basis. The ob...The application of mechanical and chemical syntheses in an high-energy vibration mill of the FESTU makes easy the process of the introduction of reinforced powders in castle composite materials on the Al basis. The obtained reinforced phases of Al-Ti-C composition have high specific Surface due to peculiarities of explosive mechanical and chemical syntheses. It increases the uniformity of their distribution in a matrix melt during the mixing process and also increases properties of castle composite materials.展开更多
Background:The simplest and most convenient food technology is the using of dry composite mixtures.They have a lot of advantages.Dry composite mixtures,which would completely be the basis for the production of persona...Background:The simplest and most convenient food technology is the using of dry composite mixtures.They have a lot of advantages.Dry composite mixtures,which would completely be the basis for the production of personalized food concentrates,are not represented.The development of such dry composite mixtures is actual and of scientific and practical interest.The purpose of this research is the selection and justification of local import-substituting raw materials components for dry composite mixtures used as the basis for the production of food concentrates.As the objects of research,the raw materials components of the starch,fruit and vegetable,industry were selected.The work uses currently accepted standard research methods for organoleptic and physic-chemical parameters of raw materials components.The research was carried out within of the project“Theoretical Substantiation of Production Technology and the Development of Import-Substituting Food Products of Functional Purpose Based on Dry Composite Mixtures”,funded by the Belarusian Republican Foundation for Basic Research.Based on the researches,it was found out that in the composition of dry composite mixtures for the production of food concentrates it is expedient to use the following raw materials:potato starch,extruded corn starch,dried carrots,dried beets,dried topinambur and dried apples in chopped form.展开更多
An integrated production planning and control model based on MRPⅡand JIT is put forward through analyzing the characteristics of magnetic materials manufacturing companies. Master Production Schedule with limited cap...An integrated production planning and control model based on MRPⅡand JIT is put forward through analyzing the characteristics of magnetic materials manufacturing companies. Master Production Schedule with limited capacity and operational plan in workshop level based on the basic data of flow chart are formulated by this model which applied JIT idea and based on customer order demand. Push production is adapted during execution phase combined with process flow cards. The model is helpful to reduce inventory,keep certain flexbility of production and improve continuity and equilibrium of manufacturing process.展开更多
This paper establishes a model for the production cost of iron and steel enterprise.The variation rule of the production cost versus the iron/steel ratio for two cases, namely,fixed steel production and a fixed amount...This paper establishes a model for the production cost of iron and steel enterprise.The variation rule of the production cost versus the iron/steel ratio for two cases, namely,fixed steel production and a fixed amount of molten iron,is analyzed,and the concept of a steel scrap threshold price is proposed.According to the analysis results,when the steel scrap unit price exceeds the steel scrap threshold price, an increase in the iron/steel ratio can reduce the production cost,and vice versa.When the gap between the steel scrap unit price and the steel scrap threshold price is relatively large, the impact of the iron/steel ratio on the production cost is more prominent.According to the calculation example,when steel production is fixed (284 358 t/month)and the steel scrap unit price is 263.2 yuan/t more than the steel scrap threshold price,an increase of 0.01 in the iron/steel ratio causes a monthly production cost reduction of approximately 750 000 yuan (2.63 yuan/t).When the amount of molten iron is fixed (270 425 t/month)and the steel scrap unit price is 140.7 yuan/t more than the threshold price,an increase of 0.01 in the iron/steel ratio causes a monthly production cost reduction of approximately 430 000 yuan (1.5 yuan/t).The results indicate that iron and steel enterprise should adjust the production strategy in time when the scrap price fluctuates, and then the production cost will be reduced.展开更多
Reactive Materials(RMs),a new material with structural and energy release characteristics under shockinduced chemical reactions,are promising in extensive applications in national defense and military fields.They can ...Reactive Materials(RMs),a new material with structural and energy release characteristics under shockinduced chemical reactions,are promising in extensive applications in national defense and military fields.They can increase the lethality of warheads due to their dual functionality.This paper focuses on the energy release characteristics of RM casings prepared by alloy melting and casting process under explosive loading.Explosion experiments of RM and conventional 2A12 aluminum alloy casings were conducted in free field to capture the explosive fireballs,temperature distribution,peak overpressure of the air shock wave and the fracture morphology of fragments of reactive material(RM)warhead casings by using high-speed camera,infrared thermal imager temperature and peak overpressure testing and scanning electron microscope.Results showed that an increase of both the fireball temperature and air shock wave were observed in all RM casings compared to conventional 2A12 aluminum ally casings.The RM casings can improve the peak overpressure of the air shock wave under explosion loading,though the results are different with different charge ratios.According to the energy release characteristics of the RM,increasing the thickness of RM casings will increase the peak overpressure of the near-field air shock wave,while reducing the thickness will increase the peak overpressure of the far-field air shock wave.展开更多
Monocyclic nitrogen-rich 3-(aminomethyl)-4,5-diamine-1,2,4-triazole(1)and fused cyclic 3,7-diamine-6-(aminomethyl)-[1,2,4]triazolo[4,3-b][1,2,4]triazole(9)were synthesized through the convenient cyclization reaction f...Monocyclic nitrogen-rich 3-(aminomethyl)-4,5-diamine-1,2,4-triazole(1)and fused cyclic 3,7-diamine-6-(aminomethyl)-[1,2,4]triazolo[4,3-b][1,2,4]triazole(9)were synthesized through the convenient cyclization reaction from the readily available reactant.Their energetic salts with high nitrogen content were proved to be rare examples of divalent monocyclic/fused cyclic cationic salts according to the single crystal analyses.The structure of intermediate B was also identified and verified by its trivalent cation crystal 17.5H_2O indirectly.Energetic compounds 2-8 and 10-17 were fully characterized by NMR spectroscopy,infrared spectroscopy,differential scanning calorimetry,elemental analysis.These energetic salts exhibit good thermal stability with decomposition temperatures ranged from 182℃to 245℃.The sensitivity of compounds 2,6,10 and 14 is similar or superior to that of RDX while the others were much more insensitive to mechanical stimulate.Furthermore,detonation velocity of 10(8843 m/s)surpass that of RDX(D=8795 m/s).Considering the high gas production volume(≥808 L/kg)of 2,4,10and 12,constant-volume combustion experiments were conduct to evaluate their gas production capacities specifically.These compounds possess much higher maximum gas-production pressures(P_(max):7.88-10.08 MPa)than the commonly used reagent guanidine nitrate(GN:P_(max)=4.20 MPa),which indicate their strong gas production capacity.展开更多
Ti1Al2O3 Functionally Gradient Material (FGM) was prepared by an explosive compaction/SHS process. Ten sheets of the compounding powder were laminated and pressed to get a green body of FGM. It was then compacted expl...Ti1Al2O3 Functionally Gradient Material (FGM) was prepared by an explosive compaction/SHS process. Ten sheets of the compounding powder were laminated and pressed to get a green body of FGM. It was then compacted explosively By burying the explosive compaction body into a stoichiometric Al/TiO2 mixture and igniting the combustion of the stoichiometric Al/TiO2 mixture, the SHS reaction of the explosive compaction body was initiated by the heat released from the combustion of the stoichiometric Al/TiO2 mixture. In this way, Ti/Al2O3 FGM was synthesized. The adiabatic temperatures of each gradient layer were calculated when the preheating temperatures were 298 K and 1173 K, respectively The microstructure, composition and properties of Ti/Al2O3 FGM and the reaction mechanism of each gradient layer were studied. It was found that Ti/Al2O3 FGM prepared by the explosive compaction/SHS process had a high density and a high microhardness. Its structure, composition and properties showed apparent gradient distribution. The structure of the standard stoichiometric ratio gradient layer of FGM was a network structure. Its reaction mode could be described as follows: Al powder melted first, then the molten Al penetrated into the TiO2 zone and reacted with TiO2, and big pores were left in the original positions of Al powder. The reaction of gradient layers with the addition of Al3O3 as diluents was similar to that of the standard stoichiometric ratio gradient layer, so were their structure and composition. However, the reaction of gradient layers with the addition of Ti as diluents was more complex and the composition deviated slightly from the designed one展开更多
An integral connection exists among the mine production planning, the mined material destination, and the ultimate pit limit (UPL) in the mining engineering economy. This relation is reinforced by real information a...An integral connection exists among the mine production planning, the mined material destination, and the ultimate pit limit (UPL) in the mining engineering economy. This relation is reinforced by real information and the benefits it engenders in the mining economy. Hence, it is important to create optimizing algorithms to reduce the errors of economic calculations. In this work, a logical mathematical algorithm that considers the important designing parameters and the mining economy is proposed. This algorithm creates an optimizing repetitive process among different designing constituents and directs them into the maximum amount of the mine economical parameters. This process will produce the highest amount of ores and the highest degree of safety. The modeling produces a new relation between the concept of the cutoff grade, mine designing, and mine planning, and it provides the maximum benefit by calculating the destination of the ores. The proposed algorithm is evaluated in a real case study. The results show that the net present value of the mine production is increased by 3% compared to previous methods of production design and UPL.展开更多
1 Introduction Magnesium salts are very important by-product of salt lake industry in West China.Nearly 200 million cubic meters of waste brine are released to the environment
To enhance the protease production and decrease cost, corn flour and soy peptone were screened as cheap raw materials for the production of extracellular proteases by Bacillus strains. Their compositions in the medium...To enhance the protease production and decrease cost, corn flour and soy peptone were screened as cheap raw materials for the production of extracellular proteases by Bacillus strains. Their compositions in the medium suitable for enzyme production of Bacillus sp. B001 were optimized using statistical experiment designs. Under the optimized conditions, the protease production of Bacillus sp. B001 was stable at the stationary stage and reached to 63,200 U/mL, approximately 1.84-fold increase compared with that using the original medium. These improvements could be attributed to the release of the catabolite repression by crude materials corn flour and soy peptone which contained low level of available nutrients. Additionally, a highly pure protease which displayed excellent stability and compatibility with high salinity, commercial laundry detergents, and organic solvents, was rapidly obtained by two-step procedure involving ammonium sulphate precipitation and anion exchange from the fermentation cultures of B001 in the optimized medium. When the culture method applied to other Bacillus strains, their protease yields were all remarkably increased approximately 2.9 to 8.5 folds. In conclusion, a low-cost, easy-purified, and effective producing strategy using the cheap raw materials was developed here, representing a potential application for protease production in various Industrial processes.展开更多
基金the support from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) under the Hydrogen and Fuel Cell Technologies Office Awards DE-EE0008426 and DE-EE0008423National Energy Technology Laboratory under Award DEFE0011585.
文摘Herein,ionomer-free amorphous iridium oxide(IrO_(x))thin electrodes are first developed as highly active anodes for proton exchange membrane electrolyzer cells(PEMECs)via low-cost,environmentally friendly,and easily scalable electrodeposition at room temperature.Combined with a Nafion 117 membrane,the IrO_(x)-integrated electrode with an ultralow loading of 0.075 mg cm^(-2)delivers a high cell efficiency of about 90%,achieving more than 96%catalyst savings and 42-fold higher catalyst utilization compared to commercial catalyst-coated membrane(2 mg cm^(-2)).Additionally,the IrO_(x)electrode demonstrates superior performance,higher catalyst utilization and significantly simplified fabrication with easy scalability compared with the most previously reported anodes.Notably,the remarkable performance could be mainly due to the amorphous phase property,sufficient Ir^(3+)content,and rich surface hydroxide groups in catalysts.Overall,due to the high activity,high cell efficiency,an economical,greatly simplified and easily scalable fabrication process,and ultrahigh material utilization,the IrO_(x)electrode shows great potential to be applied in industry and accelerates the commercialization of PEMECs and renewable energy evolution.
基金supported by the National Natural Science Foundation of China(No.52171022,No.22105214)Zhejiang Provincial Natural Science Foundation of China(Grant No.LXR22B030001)+3 种基金Fujian Institute of Innovation and Chinese Academy of Sciences.K.C.Wong Education Foundation(GJTD-2019-13)the National Key Research and Development Program of China(2019YFB2203400)Ningbo Yongjiang Talent Introduction Programme(2021A-036-B)NingBo S&T Innovation 2025 Major Special Programme(No:2020z059)and the“111 Project”(B20030).
文摘Oxygenated carbon materials exhibit outstanding electrocatalytic performance in the production of hydrogen peroxide(H2O2)through a two-electron oxygen reduction reaction.The nature of the active functional group and underlying reaction mechanism,however,remain unclear.Here,a comprehensive workflow was established to identify the active sites from the numerous possible structures.The common hydroxyl group at the notched edge demonstrates a key role in the two-electron process.The local chemical environment weakens the binding of OOH intermediate to substrate while enhancing interaction with solution,thereby promoting the H_(2)O_(2)production.With increasing pH,the intramolecular hydrogen bond between OOH intermediate and hydroxyl decreases,facilitating OOH desorption.Furthermore,the rise in selectivity with increasing potential stems from the suppression of the four-electron process.The active site was further validated through experiments.Guided by theoretical understanding,optimal performance was achieved with high selectivity(>95%)and current density(2.06 mA/cm^(2))in experiment.
文摘Currently,the energy crisis is the crucial problem faced by the world,and photocatalytic hydrogen(H_(2))production is recognized with a chance to be a standout amongst those guaranteeing results to this issue.For a long time,photocatalytic H_(2) production has mainly relied on the noble metal cata‐lysts.However,the limitations of noble metals themselves,such as scarcity and high cost,have se‐verely restricted their large‐scale application.Therefore,it is urgent to seek a cheaper,more effi‐cient,and stable catalyst for photocatalytic H_(2) production.Fortunately,the emergence of carbon nanostructured materials(CNMs)has brought dawn.Its excellent structure and semiconductor performance can effectively participate in photocatalytic H_(2) production.CNMs have developed rap‐idly since they appeared in the field of photocatalytic water splitting.Therefore,it is necessary to summarize the latest progress of CNMs promptly for further development.This review introduced the CNMs,including carbon dots,fullerenes,carbon nanotubes,graphene,and graphdiyne,which is a powerful assistant in photocatalytic H_(2) production.CNMs can provide abundant adsorption and active sites,charge separation and transport channels,photocatalysts,co‐catalysts and photosensi‐tizers.Then,this review has introduced the strategy for enhancing CNMs in photocatalytic H_(2) pro‐duction based on recent research.Finally,the challenge faced by CNMs in photocatalytic H_(2) produc‐tion has prospected.
基金This work was financially supported by the National Key R&D Program of China(2018YFB1502101)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(NSFC51621001)+2 种基金National Natural Science Foundation of China Projects(51771075)Natural Science Foundation of Guangdong Province of China(2016A030312011)Z.L.acknowledges the funding support from the Australian Research Council(ARC Discovery Projects,DP180102976 and DP210103539).
文摘As an environmentally friendly and high-density energy carrier,hydrogen has been recognized as one of the ideal alternatives for fossil fuels.One of the major challenges faced by“hydrogen economy”is the development of efficient,low-cost,safe and selective hydrogen generation from chemical storage materials.In this review,we summarize the recent advances in hydrogen production via hydrolysis and alcoholysis of light-metal-based materials,such as borohydrides,Mg-based and Al-based materials,and the highly efficient regeneration of borohydrides.Unfortunately,most of these hydrolysable materials are still plagued by sluggish kinetics and low hydrogen yield.While a number of strategies including catalysis,alloying,solution modification,and ball milling have been developed to overcome these drawbacks,the high costs required for the“one-pass”utilization of hydrolysis/alcoholysis systems have ultimately made these techniques almost impossible for practical large-scale applications.Therefore,it is imperative to develop low-cost material systems based on abundant resources and effective recycling technologies of spent fuels for efficient transport,production and storage of hydrogen in a fuel cell-based hydrogen economy.
文摘In order to investigate detonation propagation characteristics of different charge patterns,the detonation velocities of superposition strip shaped charges made up of a detonating cord and explosives were measured by a detonation velocity measuring instrument under conditions of different ignition.The experimental results and theoretical analysis show that the maximum detonation propagation velocity depends on the explosive materials with the maximum velocity among all the explosive materials.Using detonating cord in a superposition charge can shorten detonation propagation time and improve the efficiency of explosive energy.The measurement method of detonation propagation velocity and experimental results are presented and investigated.
基金supported by the Natural Sciences and Engineering Research Council of Canada(NSERC)the China Scholarship Council(CSC,201708130079)。
文摘Coal fly ash(FA),a valuable industrial solid residue generated from coal combustion,is composed of various metal oxides and has a high thermal stability.Given that the coal-based energy will continue to account for a significant portion of global electricity generation in the coming years,the lack of effective management strategies exacerbates the threat of FA wastes to the surrounding environment and human health.For a sustainable development,green and renewable hydrogen economy and CO_(2)capture efforts provide appealing opportunities to valorize FA as catalysts and/or sorbents due to their appealing physicochemical properties.Hydrogen applications along with carbon neutrality are potential strategies to mitigate climate change crisis,but high processing costs(catalysts/sorbents)are challenging to realize this purpose.In this context,the utilization of FA not only enhances industrial competitiveness(by reducing manufacturing costs),but also provides ecologically friendly approaches to minimizing this solid waste.This state-of-the-art review highlights a wide-ranging outlook on the valorization of FA as catalysts and sorbents for hydrogen-rich gas production via conventional/intensified processes(CO_(2)/H_(2)O reforming,ammonia decomposition,hydride hydrolysis).The fundamental physicochemical characterizations and hazards/utilization of FA,which significantly affect the FA's utilization in various fields,are first introduced.The influence of several factors(like FA types and catalysis/sorption operation conditions)on the activity performance of FA-based materials is then discussed in detail.This critical review aims to open the window to further innovative ideas regarding the application of different FA residues in other catalytic and sorption processes.
文摘From 1980’s decade,the introduction of carbon composite materials in structural applications has been consistently increased in the successive generations of civil aircraft from Single Aisle to Middle-long Range to achieve a culminant point with more than 50%in structure weight in recent commercial civil aircraft.This evolution,done through successive iterations,has been possible by combining in the same time the improvement of intrinsic composite material performances and its transformation into prepreg production technologies together with the development of new manufacturing process for material lay-up automation at composite shop-floor manufacturer of aircraft composite parts.New challenges are still coming to continuously develop materials and technologies in order to pursue the production more cost-effective composite parts.Associated to higher aircraft production rate for single aisle,new challenges may force material and aircraft designers and producers to furthermore drive new products and processes introduction and new ways of transformation within in next decade of composite aircraft designs.We propose to illustrate these trends using past and recent developments and our return of experience from Hexcel on Civil Aircraft programs.
文摘Anthropic methane emissions can largely be prevented or minimized using technologies that are already available. One such technology is anaerobic digestion (AD), which is used commercially around the world, especially in Europe and the United States, where some challenging targets have been set to diversify the energy mix with more renewable energy. This foresight study was designed to identify which technological solutions out of the many options available for biogas production are attracting most interest, for which purpose patent documents and scientific publications were analyzed. The aim is to identify which raw materials are most attractive for AD and biogas production. It was found that the raw materials that have attracted most research and patenting activity are sludge, sewage, and wastewater, livestock waste, and agriculture waste, which together account for 62% of all the patents filed and 74% of all the scientific publications. The countries most engaged in producing biogas from AD plants are China, Germany, and the United States. We also identified a rising trend in the use of biogas around the world, and a steady increase in the number of patents filed on the subject, especially in Japan and South Korea. This growth is driven, amongst other things, by strategic governmental actions, global environmental pacts, and the realization on the part of industry that anaerobic digestion can be used as an efficient method for treating waste and effluents.
文摘The application of mechanical and chemical syntheses in an high-energy vibration mill of the FESTU makes easy the process of the introduction of reinforced powders in castle composite materials on the Al basis. The obtained reinforced phases of Al-Ti-C composition have high specific Surface due to peculiarities of explosive mechanical and chemical syntheses. It increases the uniformity of their distribution in a matrix melt during the mixing process and also increases properties of castle composite materials.
文摘Background:The simplest and most convenient food technology is the using of dry composite mixtures.They have a lot of advantages.Dry composite mixtures,which would completely be the basis for the production of personalized food concentrates,are not represented.The development of such dry composite mixtures is actual and of scientific and practical interest.The purpose of this research is the selection and justification of local import-substituting raw materials components for dry composite mixtures used as the basis for the production of food concentrates.As the objects of research,the raw materials components of the starch,fruit and vegetable,industry were selected.The work uses currently accepted standard research methods for organoleptic and physic-chemical parameters of raw materials components.The research was carried out within of the project“Theoretical Substantiation of Production Technology and the Development of Import-Substituting Food Products of Functional Purpose Based on Dry Composite Mixtures”,funded by the Belarusian Republican Foundation for Basic Research.Based on the researches,it was found out that in the composition of dry composite mixtures for the production of food concentrates it is expedient to use the following raw materials:potato starch,extruded corn starch,dried carrots,dried beets,dried topinambur and dried apples in chopped form.
基金supported by Ministry of Education Social Science and Humanities Fund(12YJA630187)SHANNXI Social Science Fund(10Q067)High Education Research Fund of Northwestern Polytechnical University(2014)
文摘An integrated production planning and control model based on MRPⅡand JIT is put forward through analyzing the characteristics of magnetic materials manufacturing companies. Master Production Schedule with limited capacity and operational plan in workshop level based on the basic data of flow chart are formulated by this model which applied JIT idea and based on customer order demand. Push production is adapted during execution phase combined with process flow cards. The model is helpful to reduce inventory,keep certain flexbility of production and improve continuity and equilibrium of manufacturing process.
基金The National Key Technology R&D Program during the 12th Five-Year Plan Period(No.2012BAF10B05)
文摘This paper establishes a model for the production cost of iron and steel enterprise.The variation rule of the production cost versus the iron/steel ratio for two cases, namely,fixed steel production and a fixed amount of molten iron,is analyzed,and the concept of a steel scrap threshold price is proposed.According to the analysis results,when the steel scrap unit price exceeds the steel scrap threshold price, an increase in the iron/steel ratio can reduce the production cost,and vice versa.When the gap between the steel scrap unit price and the steel scrap threshold price is relatively large, the impact of the iron/steel ratio on the production cost is more prominent.According to the calculation example,when steel production is fixed (284 358 t/month)and the steel scrap unit price is 263.2 yuan/t more than the steel scrap threshold price,an increase of 0.01 in the iron/steel ratio causes a monthly production cost reduction of approximately 750 000 yuan (2.63 yuan/t).When the amount of molten iron is fixed (270 425 t/month)and the steel scrap unit price is 140.7 yuan/t more than the threshold price,an increase of 0.01 in the iron/steel ratio causes a monthly production cost reduction of approximately 430 000 yuan (1.5 yuan/t).The results indicate that iron and steel enterprise should adjust the production strategy in time when the scrap price fluctuates, and then the production cost will be reduced.
基金the Fundamental Research Funds for the Central Universities(No.30920021108)Open Foundation of Hypervelocity Impact Research Center of CARDC(20200106).
文摘Reactive Materials(RMs),a new material with structural and energy release characteristics under shockinduced chemical reactions,are promising in extensive applications in national defense and military fields.They can increase the lethality of warheads due to their dual functionality.This paper focuses on the energy release characteristics of RM casings prepared by alloy melting and casting process under explosive loading.Explosion experiments of RM and conventional 2A12 aluminum alloy casings were conducted in free field to capture the explosive fireballs,temperature distribution,peak overpressure of the air shock wave and the fracture morphology of fragments of reactive material(RM)warhead casings by using high-speed camera,infrared thermal imager temperature and peak overpressure testing and scanning electron microscope.Results showed that an increase of both the fireball temperature and air shock wave were observed in all RM casings compared to conventional 2A12 aluminum ally casings.The RM casings can improve the peak overpressure of the air shock wave under explosion loading,though the results are different with different charge ratios.According to the energy release characteristics of the RM,increasing the thickness of RM casings will increase the peak overpressure of the near-field air shock wave,while reducing the thickness will increase the peak overpressure of the far-field air shock wave.
基金supported by the National Natural Science Foundation of China(No.21875110,22075143)the Science Challenge Project(No.TZ2018004)the Qing Lan Project for the grant。
文摘Monocyclic nitrogen-rich 3-(aminomethyl)-4,5-diamine-1,2,4-triazole(1)and fused cyclic 3,7-diamine-6-(aminomethyl)-[1,2,4]triazolo[4,3-b][1,2,4]triazole(9)were synthesized through the convenient cyclization reaction from the readily available reactant.Their energetic salts with high nitrogen content were proved to be rare examples of divalent monocyclic/fused cyclic cationic salts according to the single crystal analyses.The structure of intermediate B was also identified and verified by its trivalent cation crystal 17.5H_2O indirectly.Energetic compounds 2-8 and 10-17 were fully characterized by NMR spectroscopy,infrared spectroscopy,differential scanning calorimetry,elemental analysis.These energetic salts exhibit good thermal stability with decomposition temperatures ranged from 182℃to 245℃.The sensitivity of compounds 2,6,10 and 14 is similar or superior to that of RDX while the others were much more insensitive to mechanical stimulate.Furthermore,detonation velocity of 10(8843 m/s)surpass that of RDX(D=8795 m/s).Considering the high gas production volume(≥808 L/kg)of 2,4,10and 12,constant-volume combustion experiments were conduct to evaluate their gas production capacities specifically.These compounds possess much higher maximum gas-production pressures(P_(max):7.88-10.08 MPa)than the commonly used reagent guanidine nitrate(GN:P_(max)=4.20 MPa),which indicate their strong gas production capacity.
文摘Ti1Al2O3 Functionally Gradient Material (FGM) was prepared by an explosive compaction/SHS process. Ten sheets of the compounding powder were laminated and pressed to get a green body of FGM. It was then compacted explosively By burying the explosive compaction body into a stoichiometric Al/TiO2 mixture and igniting the combustion of the stoichiometric Al/TiO2 mixture, the SHS reaction of the explosive compaction body was initiated by the heat released from the combustion of the stoichiometric Al/TiO2 mixture. In this way, Ti/Al2O3 FGM was synthesized. The adiabatic temperatures of each gradient layer were calculated when the preheating temperatures were 298 K and 1173 K, respectively The microstructure, composition and properties of Ti/Al2O3 FGM and the reaction mechanism of each gradient layer were studied. It was found that Ti/Al2O3 FGM prepared by the explosive compaction/SHS process had a high density and a high microhardness. Its structure, composition and properties showed apparent gradient distribution. The structure of the standard stoichiometric ratio gradient layer of FGM was a network structure. Its reaction mode could be described as follows: Al powder melted first, then the molten Al penetrated into the TiO2 zone and reacted with TiO2, and big pores were left in the original positions of Al powder. The reaction of gradient layers with the addition of Al3O3 as diluents was similar to that of the standard stoichiometric ratio gradient layer, so were their structure and composition. However, the reaction of gradient layers with the addition of Ti as diluents was more complex and the composition deviated slightly from the designed one
文摘An integral connection exists among the mine production planning, the mined material destination, and the ultimate pit limit (UPL) in the mining engineering economy. This relation is reinforced by real information and the benefits it engenders in the mining economy. Hence, it is important to create optimizing algorithms to reduce the errors of economic calculations. In this work, a logical mathematical algorithm that considers the important designing parameters and the mining economy is proposed. This algorithm creates an optimizing repetitive process among different designing constituents and directs them into the maximum amount of the mine economical parameters. This process will produce the highest amount of ores and the highest degree of safety. The modeling produces a new relation between the concept of the cutoff grade, mine designing, and mine planning, and it provides the maximum benefit by calculating the destination of the ores. The proposed algorithm is evaluated in a real case study. The results show that the net present value of the mine production is increased by 3% compared to previous methods of production design and UPL.
基金supported by the National Natural Science Foundationthe National Key Technologies R&D Program (2011BAE28B01)the 863 Program (2013AA032501)
文摘1 Introduction Magnesium salts are very important by-product of salt lake industry in West China.Nearly 200 million cubic meters of waste brine are released to the environment
文摘To enhance the protease production and decrease cost, corn flour and soy peptone were screened as cheap raw materials for the production of extracellular proteases by Bacillus strains. Their compositions in the medium suitable for enzyme production of Bacillus sp. B001 were optimized using statistical experiment designs. Under the optimized conditions, the protease production of Bacillus sp. B001 was stable at the stationary stage and reached to 63,200 U/mL, approximately 1.84-fold increase compared with that using the original medium. These improvements could be attributed to the release of the catabolite repression by crude materials corn flour and soy peptone which contained low level of available nutrients. Additionally, a highly pure protease which displayed excellent stability and compatibility with high salinity, commercial laundry detergents, and organic solvents, was rapidly obtained by two-step procedure involving ammonium sulphate precipitation and anion exchange from the fermentation cultures of B001 in the optimized medium. When the culture method applied to other Bacillus strains, their protease yields were all remarkably increased approximately 2.9 to 8.5 folds. In conclusion, a low-cost, easy-purified, and effective producing strategy using the cheap raw materials was developed here, representing a potential application for protease production in various Industrial processes.