期刊文献+
共找到4,685篇文章
< 1 2 235 >
每页显示 20 50 100
Crack propagation and damage evolution of metallic cylindrical shells under internal explosive loading
1
作者 Yusong Luo Weibing Li +2 位作者 Junbao Li Wenbin Li Xiaoming Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第9期133-146,共14页
This paper investigates the three-dimensional crack propagation and damage evolution process of metallic column shells under internal explosive loading.The calibration of four typical failure parameters for 40CrMnSiB ... This paper investigates the three-dimensional crack propagation and damage evolution process of metallic column shells under internal explosive loading.The calibration of four typical failure parameters for 40CrMnSiB steel was conducted through experiments and subsequently applied to simulations.The numerical simulation results employing the four failure criteria were compared with the differences and similarities observed in freeze-recovery tests and ultra-high-speed tests.This analysis addressed the critical issue of determining failure criteria for the fracture of a metal shell under internal explosive loads.Building upon this foundation,the damage parameter D_(c),linked to the cumulative crack density,was defined based on the evolution characteristics of a substantial number of cracks.The relationship between the damage parameter and crack velocity over time was established,and the influence of the internal central pressure on the damage parameter and crack velocity was investigated.Variations in the fracture modes were found under different failure criteria,with the principal strain failure criterion proving to be the most effective for simulating 3D crack propagation in a pure shear fracture mode.Through statistical analysis of the shell penetration fracture radius data,it was determined that the fracture radius remained essentially constant during the crack evolution process and could be considered a constant.The propagation velocity of axial cracks ranged between 5300 m/s and 12600 m/s,surpassing the Rayleigh wave velocity of the shell material and decreasing linearly with time.The increase in shell damage exhibited an initial rapid phase,followed by deceleration,demonstrating accelerated damage during the propagation stage of the blast wave and decelerated damage after the arrival of the rarefaction wave.This study provides an effective approach for investigating crack propagation and damage evolution.The derived crack propagation and damage evolution law serves as a valuable reference for the development of crack velocity theory and the construction of shell damage evolution modes. 展开更多
关键词 Internal explosive loading Failure criterion Crack propagation Damage evolution Freeze-recovery test
下载PDF
Reinforcing effects of polypropylene on energy absorption and fracturing of cement-based tailings backfill under impact loading 被引量:1
2
作者 Jiajian Li Shuai Cao Erol Yilmaz 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期650-664,共15页
Polypropylene(PP)fiber-reinforced cement-based tailings backfill(FRCTB)is a green compound material with superior crack resistance and has good prospects for application in underground mining.However,FRCTB exhibits su... Polypropylene(PP)fiber-reinforced cement-based tailings backfill(FRCTB)is a green compound material with superior crack resistance and has good prospects for application in underground mining.However,FRCTB exhibits susceptibility to dynamic events,such as impact ground pressure and blast vibrations.This paper investigates the energy and crack distribution behavior of FRCTB under dynamic impact,considering the height/diameter(H/D)effect.Split Hopkinson pressure bar,industrial computed tomography scan,and scanning electron microscopy(SEM)experiments were carried out on six types of FRCTB.Laboratory outcomes confirmed fiber aggregation at the bottom of specimens.When H/D was less than 0.8,the proportion of PP fibers distributed along theθangle direction of80°-90°increased.For the total energy,all samples presented similar energy absorption,reflectance,and transmittance.However,a rise in H/D may cause a rise in the energy absorption rate of FRCTB during the peak phase.A positive correlation existed between the average strain rate and absorbed energy per unit volume.The increase in H/D resulted in a decreased crack volume fraction of FRCTB.When the H/D was greater than or equal to 0.7,the maximum crack volume fraction of FRCTB was observed close to the incidence plane.Radial cracks were present only in the FRCTB with an H/D ratio of 0.5.Samples with H/D ratios of 0.5 and 0.6 showed similar distributions of weakly and heavily damaged areas.PP fibers can limit the emergence and expansion of cracks by influencing their path.SEM observations revealed considerable differences in the bonding strengths between fibers and the FRCTB.Fibers that adhered particularly well to the substrate were attracted together with the hydration products adhering to surfaces.These results show that FRCTB is promising as a sustainable and green backfill for determining the design properties of mining with backfill. 展开更多
关键词 cement-based tailings fiber-reinforced backfills FRACTURE energy absorption impact loading
下载PDF
Micro defects formation and dynamic response analysis of steel plate of quasi-cracking area subjected to explosive load
3
作者 Zheng-qing Zhou Ze-chen Du +5 位作者 Xiao Wang Hui-ling Jiang Qiang Zhou Yu-long Zhang Yu-zhe Liu Pei-ze Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期580-593,共14页
As the protective component,steel plate had attracted extensive attention because of frequently threats of explosive loads.In this paper,the evolution of microstructure and the mechanism of damage in the quasi-crackin... As the protective component,steel plate had attracted extensive attention because of frequently threats of explosive loads.In this paper,the evolution of microstructure and the mechanism of damage in the quasi-cracking area of steel plate subjected to explosive load were discussed and the relationships between micro defects and dynamic mechanical response were revealed.After the explosion experiment,five observation points were selected equidistant from the quasi-cracking area of the section of the steel plate along the thickness direction,and the characteristics of micro defects at the observation points were analyzed by optical microscope(OM),scanning electron microscope(SEM) and electron backscattered diffraction(EBSD).The observation result shows that many slip bands(SBs) appeared,and the grain orientation changed obviously in the steel plate,the two were the main damage types of micro defects.In addition,cracks,peeling pits,grooves and other lager micro defects were appeared in the lower area of the plate.The stress parameters of the observation points were obtained through an effective numerical model.The mechanism of damage generation and crack propagation in the quasicracking area were clarified by comparing the specific impulse of each observation point with the corresponding micro defects.The result shows that the generation and expansion of micro defects are related to the stress area(i.e.the upper compression area,the neutral plane area,and the lower tension area).The micro defects gather and expand at the grain boundary,and will become macroscopic damage under the continuous action of tensile stress.Besides,the micro defects at the midpoint of the section of the steel plate in the direction away from the explosion center(i.e.the horizontal direction) were also studied.It was found that the specific impulse at these positions were much smaller than that in the thickness direction,the micro defects were only SBs and a few micro cracks,and the those decreased with the increase of the distance from the explosion center. 展开更多
关键词 explosive load Quasi-cracking area Micro defects Steel plate Dynamic response Numerical simulation
下载PDF
Microscopic defects formation and dynamic mechanical response analysis of Q345 steel plate subjected to explosive load
4
作者 Zhengqing Zhou Zechen Du +6 位作者 Yulong Zhang Guili Yang Ruixiang Wang Yuzhe Liu Peize Zhang Yaxin Zhang Xiao Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期430-442,共13页
As the basic protective element, steel plate had attracted world-wide attention because of frequent threats of explosive loads. This paper reports the relationships between microscopic defects of Q345 steel plate unde... As the basic protective element, steel plate had attracted world-wide attention because of frequent threats of explosive loads. This paper reports the relationships between microscopic defects of Q345 steel plate under the explosive load and its macroscopic dynamics simulation. Firstly, the defect characteristics of the steel plate were investigated by stereoscopic microscope(SM) and scanning electron microscope(SEM). At the macroscopic level, the defect was the formation of cave which was concentrated in the range of 0-3.0 cm from the explosion center, while at the microscopic level, the cavity and void formation were the typical damage characteristics. It also explains that the difference in defect morphology at different positions was the combining results of high temperature and high pressure. Secondly, the variation rules of mechanical properties of steel plate under explosive load were studied. The Arbitrary Lagrange-Euler(ALE) algorithm and multi-material fluid-structure coupling method were used to simulate the explosion process of steel plate. The accuracy of the method was verified by comparing the deformation of the simulation results with the experimental results, the pressure and stress at different positions on the surface of the steel plate were obtained. The simulation results indicated that the critical pressure causing the plate defects may be approximately 2.01 GPa. On this basis, it was found that the variation rules of surface pressure and microscopic defect area of the Q345 steel plate were strikingly similar, and the corresponding mathematical relationship between them was established. Compared with Monomolecular growth fitting models(MGFM) and Logistic fitting models(LFM), the relationship can be better expressed by cubic polynomial fitting model(CPFM). This paper illustrated that the explosive defect characteristics of metal plate at the microscopic level can be explored by analyzing its macroscopic dynamic mechanical response. 展开更多
关键词 explosive load Q345 steel Micro defect Finite element simulation Dynamic response Data fitting
下载PDF
Study on energy release characteristics of reactive material casings under explosive loading 被引量:6
5
作者 Ning Du Wei Xiong +3 位作者 Tao Wang Xian-feng Zhang Hai-hua Chen Meng-ting Tan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第5期1791-1803,共13页
Reactive Materials(RMs),a new material with structural and energy release characteristics under shockinduced chemical reactions,are promising in extensive applications in national defense and military fields.They can ... Reactive Materials(RMs),a new material with structural and energy release characteristics under shockinduced chemical reactions,are promising in extensive applications in national defense and military fields.They can increase the lethality of warheads due to their dual functionality.This paper focuses on the energy release characteristics of RM casings prepared by alloy melting and casting process under explosive loading.Explosion experiments of RM and conventional 2A12 aluminum alloy casings were conducted in free field to capture the explosive fireballs,temperature distribution,peak overpressure of the air shock wave and the fracture morphology of fragments of reactive material(RM)warhead casings by using high-speed camera,infrared thermal imager temperature and peak overpressure testing and scanning electron microscope.Results showed that an increase of both the fireball temperature and air shock wave were observed in all RM casings compared to conventional 2A12 aluminum ally casings.The RM casings can improve the peak overpressure of the air shock wave under explosion loading,though the results are different with different charge ratios.According to the energy release characteristics of the RM,increasing the thickness of RM casings will increase the peak overpressure of the near-field air shock wave,while reducing the thickness will increase the peak overpressure of the far-field air shock wave. 展开更多
关键词 Reactive materials explosive loading Shock-induced chemical reaction Energy release characteristics FRAGMENTATION
下载PDF
Fragment spatial distribution of prismatic casing under internal explosive loading 被引量:3
6
作者 Tianbao Ma Xinwei Shi +1 位作者 Jian Li Jianguo Ning 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第4期910-921,共12页
Non-cylindrical casings filled with explosives have undergone rapid development in warhead design and explosion control.The fragment spatial distribution of prismatic casings is more complex than that of traditional c... Non-cylindrical casings filled with explosives have undergone rapid development in warhead design and explosion control.The fragment spatial distribution of prismatic casings is more complex than that of traditional cylindrical casings.In this study,numerical and experimental investigations into the fragment spatial distribution of a prismatic casing were conducted.A new numerical method,which adds the Lagrangian marker points to the Eulerian grid,was proposed to track the multi-material interfaces and material dynamic fractures.Physical quantity mappings between the Lagrangian marker points and Eulerian grid were achieved by their topological relationship.Thereafter,the fragment spatial distributions of the prismatic casing with different fragment sizes,fragment shapes,and casing geometries were obtained using the numerical method.Moreover,fragment spatial distribution experiments were conducted on the prismatic casing with different fragment sizes and shapes,and the experimental data were compared with the numerical results.The effects of the fragment and casing geometry on the fragment spatial distributions were determined by analyzing the numerical results and experimental data.Finally,a formula including the casing geometry parameters was fitted to predict the fragment spatial distribution of the prismatic casing under internal explosive loading. 展开更多
关键词 Fragment spatial distribution Prismatic casing Internal explosive loading Numerical fitting formula Marker-point weighted method
下载PDF
Numerical Simulation of Concrete Plate Damaged Under Explosive Loading
7
作者 HUAN Shi JIANG Guoping +1 位作者 Chen Shengming TANG Xiangqian 《Transactions of Tianjin University》 EI CAS 2006年第B09期158-160,共3页
The grisliness after-effects can be induced by explosion accident with the collapsing of the structures, the demolishing of the equipments and the casualty of the human beings. Isolation belt constructed between the b... The grisliness after-effects can be induced by explosion accident with the collapsing of the structures, the demolishing of the equipments and the casualty of the human beings. Isolation belt constructed between the blast point and the construction is one of the useful design schemes for blast resistance. The nonlinear procedure ANSYS/LSDYNA970 is used to simulate the contact detonation and the isolation belt of blast resistance filled with the air or water respectively. The results indicate that the maximal damage can be caused by the contact detonation, and the isolation belt of blast resistent filled with water can reduce the damage greatly. 展开更多
关键词 CONCRETE explosive loading state equation numerical simulation
下载PDF
Constitutive model for concrete subjected to impact loading 被引量:6
8
作者 刘海峰 宁建国 《Journal of Southeast University(English Edition)》 EI CAS 2012年第1期79-84,共6页
To better design and analyze concrete structures, the mechanical properties of concrete subjected to impact loadings are investigated. Concrete is considered to be a two-phase composite made up of micro-cracks and sol... To better design and analyze concrete structures, the mechanical properties of concrete subjected to impact loadings are investigated. Concrete is considered to be a two-phase composite made up of micro-cracks and solid parts which consist of coarse aggregate particles and a cement mortar matrix. The cement mortar matrix is assumed to be elastic, homogeneous and isotropic. Based on the Moil-Tanaka concept of average stress and the Eshelby equivalent inclusion theory, a dynamic constitutive model is developed to simulate the impact responses of concrete. The impact compression experiments of concrete and cement mortar are also carried out. Experimental results show that concrete and cement mortar are rate-dependent. Under the same impact velocity, the load-carrying capacity of concrete is higher than that of cement mortar. Whereas, the maximum strain of concrete is lower than that of cement mortar. Regardless of whether it is concrete or cement mortar, with the increase in the impact velocity, the fragment size of specimens after experiment decreases. 展开更多
关键词 CONCRETE MICROMECHANICS dynamic constitutivemodel impact loading
下载PDF
Experimental study on dynamic mechanical property of cemented tailings backfill under SHPB impact loading 被引量:22
9
作者 Yu-ye Tan Xin Yu +2 位作者 Davide Elmo Lin-hui Xu Wei-dong Song 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第4期404-416,共13页
Cemented tailings backfill(CTB) have increasingly been used in recent years to improve the stability of mining stopes in deep underground mines. Deep mining processes are often associated with rock bursting and high-s... Cemented tailings backfill(CTB) have increasingly been used in recent years to improve the stability of mining stopes in deep underground mines. Deep mining processes are often associated with rock bursting and high-speed dynamic loading conditions. Therefore, it is important to investigate the characteristics and dynamic mechanical behavior of CTB. This paper presents the results of dynamic tests on CTB specimens with different cement and solid contents using a split Hopkinson pressure bar(SHPB). The results showed that some CTB specimens exhibited one to two lower stress peaks after reaching dynamic peak stress before they completely failed. The greater the cement-to-tailings ratio is, the more obvious the strain reaction. This property mainly manifested as follows. First,the dynamic peak stress increased with the increase of the cement-to-tailings ratio when the impact velocity was fixed. Second, the dynamic peak stress had a quadratic relationship with the average stress rate. Third, the cement-to-tailings ratio could enhance the increase rate of dynamic peak stress with strain rate. In addition, the dynamic strength enhancement factor K increased with the increase of strain rate, and its value was larger than that of the rock samples. The failure modes of CTB specimens under low-speed impact were tensile failure and X conjugate shear failure, where were nearly the same as those under static uniaxial and triaxial compression. The CTB specimens were crushed and broken under critical strain, a failure mode similar to that of low-strength concrete. The results of the experimental research can improve the understanding of the dynamic mechanical properties of CTB and guide the strength design of deep mining backfills. 展开更多
关键词 impact loading test CEMENTED TAILINGS BACKFILL dynamic mechanical properties SPLIT Hopkinson pressure BAR
下载PDF
Responses of jointed rock masses subjected to impact loading 被引量:7
10
作者 Shabnam Aziznejad Kamran Esmaieli +1 位作者 John Hadjigeorgiou Denis Labrie 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第4期624-634,共11页
Impact-induced damage to jointed rock masses has important consequences in various mining and civil engineering applications. This paper reports a numerical investigation to address the responses of jointed rock masse... Impact-induced damage to jointed rock masses has important consequences in various mining and civil engineering applications. This paper reports a numerical investigation to address the responses of jointed rock masses subjected to impact loading. It also focuses on the static and dynamic properties of an intact rock derived from a series of laboratory tests on meta-sandstone samples from a quarry in Nova Scotia, Canada. A distinct element code(PFC2D) was used to generate a bonded particle model(BPM) to simulate both the static and dynamic properties of the intact rock. The calibrated BPM was then used to construct large-scale jointed rock mass samples by incorporating discrete joint networks of multiple joint intensities into the intact rock matrix represented by the BPM. Finally, the impact-induced damage inflicted by a rigid projectile particle on the jointed rock mass samples was determined through the use of the numerical model. The simulation results show that joints play an important role in the impactinduced rock mass damage where higher joint intensity results in more damage to the rock mass. This is mainly attributed to variations of stress wave propagation in jointed rock masses as compared to intact rock devoid of joints. 展开更多
关键词 Jointed rock mass impact loading MICROCRACKS Rock damage
下载PDF
Long-term mechanical behavior and characteristics of cemented tailings backfill through impact loading 被引量:9
11
作者 Yu-ye Tan Elmo Davide +2 位作者 Yu-cheng Zhou Wei-dong Song Xiang Meng 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第2期140-151,共12页
Cemented tailings backfill(CTB)structures are important components of underground mine stopes.It is important to investigate the characteristics and dynamic behavior of CTB materials because they are susceptible to di... Cemented tailings backfill(CTB)structures are important components of underground mine stopes.It is important to investigate the characteristics and dynamic behavior of CTB materials because they are susceptible to disturbance by dynamic loading,such as excavation and blasting.In this study,the authors present the results of a series of Split-Hopkinson pressure bar(SHPB)single and cyclic impact loading tests on CTB specimens to investigate the long-term dynamic mechanical properties of CTB.The stress-strain relationship,dynamic strength,and dynamic failure characteristics of CTB specimens are analyzed and discussed to provide valuable conclusions that will improve our knowledge of CTB long-term mechanical behavior and characteristics.For instance,the dynamic peak stress under cyclic impact loading is approximately twice that under single impact loading,and the CTB specimens are less prone to fracture when cyclically loaded.These findings and conclusions can provide a new set of references for the stability analysis of CTB materials and help guide mine designers in reducing the amount of binding agents and the associated mining cost. 展开更多
关键词 cyclic impact loading cemented tailings backfill dynamic mechanical properties Split–Hopkinson pressure bar dynamic peak stress
下载PDF
Failure characteristics of high stress rock induced by impact disturbance under confining pressure unloading 被引量:18
12
作者 YIN Zhi-qiang LI Xi-bing +2 位作者 JIN Jie-fang HE Xian-qun DU Kun 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第1期175-184,共10页
The failure characteristics under coupled static and dynamic loading were investigated by the improved split Hopkinson pressure bar (SHPB) with axial pre-pressure and confining pressure. The results show that the st... The failure characteristics under coupled static and dynamic loading were investigated by the improved split Hopkinson pressure bar (SHPB) with axial pre-pressure and confining pressure. The results show that the stress—strain curve of the rock under static-dynamic coupled loading is a typical class I curve when the dynamic load is comparatively high; With the decrease of the dynamic load, the stress—strain curve transforms to a typical class II curve. The dynamic failure process was recorded by high-speed photography. Analyses of fracture surface morphology show that the failure modes of specimens are tensile failure or combined shear failure when the impact load energy is low, but the failure modes of specimens become tensile failure when the impact load energy is high. The results of fractal dimension show that the elastic potential energy release leads to increase in the degree of crushing of samples when the energy of impact load is low under coupled static and dynamic loads with high stress. 展开更多
关键词 high stress coupled static and dynamic loading impact disturbance high-speed photography
下载PDF
Energy Anaiysis for TMD-Structure Systems Subjected to Impact Loading 被引量:3
13
作者 WANG Shuqing(王树青) +5 位作者 LI Huajun(李华军) JI Chunyan(嵇春艳) JIAO Guiying(焦桂英) 《China Ocean Engineering》 SCIE EI 2002年第3期301-310,共10页
This paper investigates the characteristics of reduction of the lateral vibration by use of a Tuned Mass Damper(TMD) for offshore jacket platforms under impact loading. Unlike traditional analysis, the present analysi... This paper investigates the characteristics of reduction of the lateral vibration by use of a Tuned Mass Damper(TMD) for offshore jacket platforms under impact loading. Unlike traditional analysis, the present analysis focnses on theenergy concept of TMD/structure systems. In this study, a time domain is taken. The platform is modeled as a simplifiedsingle-degree-of-freedom (SDOF) system by extraction of the first vibration mode of the structure and the excited force isassumed to be impact loading. The energy dissipation and energy transmission of the structure-TMD system are studied.Finally, an optimized TMD design for the modeled platform is demonstrated based on a new type of cost function - maxi-mum dissipated energy by TMD. Results indicate that TMD control is effective in reducing the standard deviation of thedeck motion but less effective in reducing the maximum response under impact loading. 展开更多
关键词 tuned mass DAMPER impact loading ENERGY analysis OFFSHORE PLATFORMS vibration reduction
下载PDF
Influence of confi ning pressure and impact loading on mechanical properties of amphibolite and sericite-quartz schist 被引量:4
14
作者 Liu Shi Xu Jinyu Lv Xiaocong 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2014年第2期215-222,共8页
In order to investigate the dynamic mechanical properties of amphibolite and sericite-quartz schist under confi ning pressure, two rocks are subjected to impact loadings with different strain rates and confi ning pres... In order to investigate the dynamic mechanical properties of amphibolite and sericite-quartz schist under confi ning pressure, two rocks are subjected to impact loadings with different strain rates and confi ning pressures by using split Hopkinson pressure bar equipment with a confi ning pressure device. Based on the experimental results, the stress-strain curves are analyzed and the effects of confi ning pressure and strain rates on the dynamic compressive strength, peak strain and failure mode are summarized. The results show that:(1) The characteristics of two rocks in the ascent stage of the stressstrain curve are basically the same, but in the descent stage, the rocks gradually show plastic deformation characteristics as the confi ning pressure increases.(2) The dynamic compressive strength and peak strain of two rocks increase as the strain rate increases and the confi ning pressure effects are obvious.(3) Due to the effect of confi ning pressure, the normal stress on the damage surface of the rock increases correspondingly, the bearing capacity of the crack friction exceeds the material cohesion and the slippage of the fractured rock is controlled, which all lead to the compression and shear failure mode of rock. The theoretical analysis and experimental methods to study the dynamic failure mode and other related characteristics of rock are useful in developing standards for engineering practice. 展开更多
关键词 rock mechanics SHPB with confi ning pressure device confi ning pressure strain rate impact loading
下载PDF
Ultrasonic Evaluation of the Impact Damage of Polymer Bonded Explosives 被引量:3
15
作者 陈鹏万 戴开达 +1 位作者 黄风雷 丁雁生 《Journal of Beijing Institute of Technology》 EI CAS 2004年第3期242-246,共5页
The damage properties of polymer bonded explosives under dynamic loading were studied by using ultrasonic evaluation. Explosive samples were damaged by a low-velocity gas gun at different impact velocities. Ultrasonic... The damage properties of polymer bonded explosives under dynamic loading were studied by using ultrasonic evaluation. Explosive samples were damaged by a low-velocity gas gun at different impact velocities. Ultrasonic examination was carried out with a pulse through-transmission method. Spectra analyses were carried out by using fast Fourier transform. Characteristic ultrasonic parameters, including ultrasonic velocities, attenuation coefficients, spectra area and master frequency, were obtained. The correlation between the impact damage and ultrasonic parameters was analyzed. A damage coefficient D was defined by considering a combination of ultrasonic velocity and amplitude. The results show that ultrasonic parameters can be used to quantitatively assess the damage extent in impacted plastic bonded explosives.. 展开更多
关键词 polymer bonded explosives impact damage ultrasonic evaluation
下载PDF
A novel approach to the dynamic response analysis of Euler-Bernoulli beams resting on a Winkler soil model and subjected to impact loads
16
作者 Adolfo Foriero Filippo Santucci de Magistris Giovanni Fabbrocino 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第2期389-401,共13页
This work presents a novel approach to the dynamic response analysis of a Euler-Bernoulli beam resting on a Winkler soil model and subjected to an impact loading.The approach considers that damping has much less impor... This work presents a novel approach to the dynamic response analysis of a Euler-Bernoulli beam resting on a Winkler soil model and subjected to an impact loading.The approach considers that damping has much less importance in controlling the maximum response to impulsive loadings because the maximum response is reached in a very short time,before the damping forces can dissipate a significant portion of the energy input into the system.The development of two sine series solutions,relating to different types of impulsive loadings,one involving a single concentrated force and the other a distributed line load,are presented.This study revealed that when a simply supported Euler-Bernoulli beam,resting on a Winkler soil model,is subject to an impact load,the resulting vertical displacements,bending moments and shear forces produced along the span of the beam are considerably affected.In particular,the quantification of this effect is best observed,relative to the corresponding static solution,via an amplification factor.The computed impact amplification factors,for the sub-grade moduli used in this study,were in magnitude greater than 2,thus confirming the multiple-degree-of-freedom nature of the problem. 展开更多
关键词 beam-Winkler-soil model sub-grade moduli impact load impact distributed line load dynamic solution impact amplification factor
下载PDF
Effect of roughness on the shear behavior of rock joints subjected to impact loading 被引量:4
17
作者 Feili Wang Shuhong Wang +3 位作者 Wei Yao Xing Li Fanzheng Meng Kaiwen Xia 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第2期339-349,共11页
The shear behavior is regarded as the dominant property of rock joints and is dramatically affected by the joint surface roughness.To date,the effect of surface roughness on the shear behavior of rock joints under sta... The shear behavior is regarded as the dominant property of rock joints and is dramatically affected by the joint surface roughness.To date,the effect of surface roughness on the shear behavior of rock joints under static or cyclic loading conditions has been extensively studied,but such effect under impact loading conditions keeps unclear.To address this issue,a series of impact shear tests was performed using a novel-designed dynamic experimental system combined with the digital image correlation(DIC)technique.The dynamic shear strength,deformability and failure mode of the jointed specimens with various joint roughness coefficients(JRC)are comprehensively analyzed.Results show that the shear strength and shear displacement characteristics of the rock joint under the impact loading keep consistent with those under static loading conditions.However,the temporal variations of shear stress,slip displacement and normal displacement under the impact loading conditions show obviously different behaviors.An elastic rebound of the slip displacement occurs during the impact shearing and its value increases with increasing joint roughness.Two identifiable stages(i.e.compression and dilation)are observed in the normal displacement curves for the rougher rock joints,whereas the joints with small roughness only manifest normal compression displacement.Besides,as the roughness increases,the maximum compression tends to decrease,while the maximum dilation gradually increases.More-over,the microstructural analysis based on scanning electron microscope(SEM)suggests that the roughness significantly affects the characteristics of the shear fractured zone enclosing the joint surface. 展开更多
关键词 Rock joint impact loading Joint roughness Shear strength Shear deformability
下载PDF
Crack dynamic propagation properties and arrest mechanism under impact loading 被引量:4
18
作者 Yuqing Dong Zheming Zhu +3 位作者 Li Ren Lei Zhou Peng Ying Meng Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第6期1171-1184,共14页
Crack dynamic propagation and arrest behaviors have received extensive attention over the years.However,there still remain many questions,e.g.under what conditions will a running crack come to arrest?In this paper,dro... Crack dynamic propagation and arrest behaviors have received extensive attention over the years.However,there still remain many questions,e.g.under what conditions will a running crack come to arrest?In this paper,drop weight impact(DWI)tests were conducted to investigate crack arrest mechanism using single cleavage triangle(SCT)rock specimens.Green sandstone was selected to prepare the SCT specimens.Dynamic stress intensity factors(DSIFs)were calculated by ABAQUS code,and the critical DSIFs were determined by crack propagation speeds and fracture time measured by crack propagation gauges(CPGs).The test results show that the critical DSIF at propagation decreases with crack propagation speed.Numerical simulation for SCT specimens under different loading waves was performed using AUTODYN code.The reflected compressive wave from the incident and transmitted plates can induce crack arrests during propagation,and the number of arrest times increases with the wave length.In order to eliminate the effect of the incident and transmitted plates,models consisting of only one SCT specimen without incident and transmitted plates were established,and the same trapezoid-shaped loading wave was applied to the SCT specimen.The results show that for the SCT specimen with transmitted boundary(analogous to an infinite plate),the trapezoid-shaped loading wave cannot induce crack arrest anymore.The numerical results can well describe the occurrence of crack arrest in the experiments. 展开更多
关键词 Crack arrest Stress wave Fracture toughness Reflected wave impact loading
下载PDF
Unveiling the mechanical response and accommodation mechanism of pre-rolled AZ31 magnesium alloy under high-speed impact loading 被引量:5
19
作者 Xiao Liu Hui Yang +3 位作者 Biwu Zhu Yuanzhi Wu Wenhui Liu Changping Tang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第4期1096-1108,共13页
Split Hopkinson pressure bar(SHPB)tests were conducted on pre-rolled AZ31 magnesium alloy at 150–350℃ with strain rates of 2150s-1,3430s^(-1) and 4160s-1.The mechanical response,microstructural evolution and accommo... Split Hopkinson pressure bar(SHPB)tests were conducted on pre-rolled AZ31 magnesium alloy at 150–350℃ with strain rates of 2150s-1,3430s^(-1) and 4160s-1.The mechanical response,microstructural evolution and accommodation mechanism of the pre-rolled AZ31 magnesium alloy under high-speed impact loading were investigated.The twin and shear band are prevailing at low temperature,and the coexistence of twins and recrystallized grains is the dominant microstructure at medium temperature,while at high temperature,dynamic recrystallization(DRX)is almost complete.The increment of temperature reduces the critical condition difference between twinning and DRX,and the recrystallized temperature decreases with increasing strain rate.The mechanical response is related to the competition among the shear band strengthen,the twin strengthen and the fine grain strengthen and determined by the prevailing grain structure.The fine grain strengthen could compensate soften caused by the temperature increase and the reduction of twin and shear band.During high-speed deformation,different twin variants,introduced by pre-rolling,induce different deformation mechanism to accommodate plastic deformation and are in favor for non-basal slip.At low temperature,the high-speed deformation is achieved by twinning,dislocation slip and the following deformation shear band at different deformation stages.At high temperature,the high-speed deformation is realized by twinning and dislocation slip of early deformation stage,transition shear band of medium deformation stage and DRX of final deformation stage. 展开更多
关键词 Mechanical response Pre-twinning Accommodation mechanism Pre-rolled AZ31 magnesium alloy High-speed impact loading
下载PDF
Experimental Study of the Impact Damage of Composition B and Plastic Bonded Explosive 被引量:1
20
作者 陈鹏万 黄风雷 丁雁生 《Journal of Beijing Institute of Technology》 EI CAS 2003年第3期273-277,共5页
A long pulse low velocity gas gun with a gas buffer is used to induce impact damage in cast Composition B and hot pressed PBXN 5. To obtain different damage states, a range of projectile velocities are used by cont... A long pulse low velocity gas gun with a gas buffer is used to induce impact damage in cast Composition B and hot pressed PBXN 5. To obtain different damage states, a range of projectile velocities are used by controlling the launching pressure of gas gun. The stress history during impact loading is recorded. Various methods are used to characterize the damage state of impacted explosive samples. The microstructure is examined by use of scanning electronic microscopy (SEM) and polarized light microscopy (PLM). The densities and ultrasonic attenuation are also measured. The results show that both Composition B and PBXN 5 exhibit some damage characteristics of brittle materials. However, due to the difference in compositions, PBXN 5 exhibits better resistance to impact loading than Composition B. 展开更多
关键词 explosives impact damage microstructure ultrasonic attenuation
下载PDF
上一页 1 2 235 下一页 到第
使用帮助 返回顶部