期刊文献+
共找到31,280篇文章
< 1 2 250 >
每页显示 20 50 100
Dinitrophenyl-oxadiazole compounds:Design strategy,synthesis,and properties of a series of new melt-cast explosives
1
作者 Bao-long Kuang Ting-wei Wang +6 位作者 Cong Li Mou Sun Qamar-un-Nisa Tariq Chao Zhang Zhi-ming Xie Zu-jia Lu Jian-guo Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期100-107,共8页
Melt-cast explosives are the most widely used energetic materials in military composite explosives,researchers have been unremittingly exploring high-energy and insensitive melt-cast explosives.In this work,a series o... Melt-cast explosives are the most widely used energetic materials in military composite explosives,researchers have been unremittingly exploring high-energy and insensitive melt-cast explosives.In this work,a series of dinitrophenyl-oxadiazole compounds were designed and prepared.These compounds have an ideal low melting point(80-97℃),good detonation performance(detonation velocity D=6455-6971 m/s,detonation pressure P=18-19 GPa)and extreme insensitive nature(impact sensitivity≥60 J,friction sensitivity>360 N).All these compounds were well characterized by nuclear magnetic resonance,fourier transform infrared spectroscopy,elemental analysis.Compounds 2,3 were unambiguously confirmed by X-ray single crystal diffraction analysis.As a result,their overall properties are superior to traditional melt-cast explosives trinitrotoluene(TNT)and dinitroanisole(DNAN)which may have excellent potential applications in insensitive melt-cast explosives. 展开更多
关键词 Dinitrophenyl-oxadiazole Melt-cast explosive Low sensitivity
下载PDF
Assessing the energy release characteristics during the middle detonation reaction stage of aluminized explosives
2
作者 Kun Yang Lang Chen +3 位作者 Danyang Liu Bin Zhang Jianying Lu Junying Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期270-277,共8页
Afterburning behind the detonation front of an aluminized explosive releases energy on the millisecond timescale,which prolong the release of detonation energy and the energy release at different stages also shows sig... Afterburning behind the detonation front of an aluminized explosive releases energy on the millisecond timescale,which prolong the release of detonation energy and the energy release at different stages also shows significant differences.However,at present,there are few effective methods for evaluating the energy release characteristics of the middle reaction stage of such explosives,which can have a duration of tens to hundreds of microseconds.The present work demonstrates an approach to assessing the midstage of an aluminized explosive detonation based on a water push test employing a high degree of confinement.In this method,the explosive is contained in a steel cylinder having one end closed that is installed at the bottom of a transparent water tank.Upon detonation,the gaseous products expand in one direction while forcing water ahead of them.The resulting underwater shock wave and the interface between the gas phase products and the water are tracked using an ultra-high-speed framing and streak camera.The shock wave velocity in water and the expansion work performed by the gaseous detonation products were calculated to assess the energy release characteristics of aluminized explosives such as CL-20 and RDX in the middle stage of the detonation reaction.During the middle stage of the detonation process of these aluminized explosives,the aluminum reaction reduced the attenuation of shock waves and increased the work performed by gas phase products.A higher aluminum content increased the energy output while the presence of oxidants slowed the energy release rate.This work demonstrates an effective means of evaluating the performance of aluminized explosives. 展开更多
关键词 Aluminized explosive Non-ideal detonation Water push test Energy release
下载PDF
Fluorinated semi-interpenetrating polymer networks for enhancing the mechanical performance and storage stability of polymer-bonded explosives by controlling curing and phase separation rates
3
作者 Chao Deng Huihui Liu +1 位作者 Yongping Bai Zhen Hu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第8期58-66,共9页
Herein, the effect of fluoropolymer binders on the properties of polymer-bonded explosives(PBXs) was comprehensively investigated. To this end, fluorinated semi-interpenetrating polymer networks(semiIPNs) were prepare... Herein, the effect of fluoropolymer binders on the properties of polymer-bonded explosives(PBXs) was comprehensively investigated. To this end, fluorinated semi-interpenetrating polymer networks(semiIPNs) were prepared using different catalyst amounts(denoted as F23-CLF-30-D). The involved curing and phase separation processes were monitored using Fourier-transform infrared spectroscopy, differential scanning calorimetry, a haze meter and a rheometer. Curing rate constant and activation energy were calculated using a theoretical model and numerical method, respectively. Results revealed that owing to its co-continuous micro-phase separation structure, the F23-CLF-30-D3 semi-IPN exhibited considerably higher tensile strength and elongation at break than pure fluororubber F2314 and the F23-CLF-30-D0 semi-IPN because the phase separation and curing rates matched in the initial stage of curing.An arc Brazilian test revealed that F23-CLF-30-D-based composites used as mock materials for PBXs exhibited excellent mechanical performance and storage stability. Thus, the matched curing and phase separation rates play a crucial role during the fabrication of high-performance semi-IPNs;these factors can be feasibly controlled using an appropriate catalyst amount. 展开更多
关键词 Semi-interpenetrating polymer networks FLUOROPOLYMER Curing rate Phase separation rate Polymer-bonded explosives
下载PDF
Shock-induced energy localization and reaction growth considering chemical-inclusions effects for crystalline explosives
4
作者 Ruqin Liu Yanqing Wu +3 位作者 Xinjie Wang Fenglei Huang Xiaona Huang Yushi Wen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期278-294,共17页
Chemical inclusions significantly alter shock responses of crystalline explosives in macroscale gap experiments but their microscale dynamics origin remains unclear.Herein shock-induced energy localization,overall phy... Chemical inclusions significantly alter shock responses of crystalline explosives in macroscale gap experiments but their microscale dynamics origin remains unclear.Herein shock-induced energy localization,overall physical responses,and reactions in a-1,3,5-trinitro-1,3,5-triazinane(a-RDX)crystal entrained various chemical inclusions were investigated by the multi-scale shock technique implemented in the reactive molecular dynamics method.Results indicated that energy localization and shock reaction were affected by the intrinsic factors within chemical inclusions,i.e.,phase states,chemical compositions,and concentrations.The atomic origin of chemical-inclusions effects on energy localization is dependent on the dynamics mechanism of interfacial molecules with free space volume,which includes homogeneous intermolecular compression,interfacial impact and shear,and void collapse and jet.As introducing various chemical inclusions,the initiation of those dynamics mechanisms triggers diverse decay rates of bulk RDX molecules and hereby impacts on growth speeds of final reactions.Adding chemical inclusions can reduce the effectiveness of the void during the shock impacting.Under the shockwave velocity of 9 km/s,the parent RDX decay rate in RDX entrained amorphous carbon decreases the most and is about one fourth of that in RDX with a vacuum void,and solid HMX and TATB inclusions are more reactive than amorphous carbon but less reactive than dry air or acetone inclusions.The lessdense shocking system denotes the greater increases in local temperature and stress,the faster energy liberation,and the earlier final reaction into equilibrium,revealing more pronounced responses to the present intense shockwave.The quantitative models associated with the relative system density(RD_(sys))were proposed for indicating energy-localization mechanisms and evaluating initiation safety in the shocked crystalline explosive.RD_(sys)is defined by the density ratio of defective RDX to perfect crystal after dynamics relaxation and reveals the global density characteristic in shocked systems filled with chemical inclusions.When RD_(sys)is below 0.9,local hydrodynamic jet initiated by void collapse dominates upon energy localization instead of interfacial impact.This study sheds light on novel insights for understanding the shock chemistry and physical-based atomic origin in crystalline explosives considering chemical-inclusions effects. 展开更多
关键词 Shock responses Energy localization Crystalline explosives Chemical inclusions Reactive molecular dynamics
下载PDF
Research on the quasi-isentropic driving model of aluminized explosives in the detonation wave propagation direction
5
作者 Hongfu Wang Yan Liu +5 位作者 Fan Bai Chao He Yingliang Xu Qiang Zhou Chuan Xiao Fenglei Huang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期596-618,共23页
Taking CL-20(Hexanitrohexaazaisowurtzitane)-based aluminized explosives with high gurney energy as the research object, this research experimentally investigates the work capability of different aluminized explosive f... Taking CL-20(Hexanitrohexaazaisowurtzitane)-based aluminized explosives with high gurney energy as the research object, this research experimentally investigates the work capability of different aluminized explosive formulations when driving metal flyer plates in the denotation wave propagation direction.The research results showed that the formulations with 43 μm aluminum(Al) powder particles(The particle sizes of Al powder were in the range of 2~43 μm) exhibited the optimal performance in driving flyer plates along the denotation wave propagation direction. Compared to the formulations with Al powder 13 μm, the formulations with Al powder 2 μm delivered better performance in accelerating metal flyer plates in the early stage, which, however, turned to be poor in the later stage. The CL-20-based explosives containing 25% Al far under-performed those containing 15% Al. Based on the proposed quasi-isentropic hypothesis, relevant isentropy theories, and the functional relationship between detonation parameters and entropy as well as Al reaction degree, the characteristic lines of aluminized explosives in accelerating flyer plates were theoretically studied, a quasi-isentropic theoretical model for the aluminized explosive driving the flyer plate was built and the calculation methods for the variations of flyer plate velocity, Al reaction degree, and detonation product parameters with time and axial positions were developed. The theoretical model built is verified by the experimental results of the CL-20-based aluminized explosive driving flyer plate. It was found that the model built could accurately calculate the variations of flyer plate velocity and Al reaction degree over time. In addition, how physical parameters including detonation product pressure and temperature varied with time and axial positions was identified. The action time of the positive pressure after the detonation of aluminized explosives was found prolonged and the downtrend of the temperature was slowed down and even reversed to a slight rise due to the aftereffect reaction between the Al powder and the detonation products. 展开更多
关键词 Aluminized explosive Flyer plate experiment Quasi-isentropic theoretical model Al reaction Driving characteristics
下载PDF
Effects of temperature, particle size, and air humidity on sensibility of typical high-energetic explosives
6
作者 WU Sanzhen FANG Mingkun +3 位作者 WU Xingliang GUO Guangfei WANG Junhong XU Sen 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2024年第3期408-416,共9页
The production and utilization of high-energetic explosives often pose a range of safety hazards,with sensitivity being a key factor in evaluating these risks.To investigate how temperature,particle size,and air humid... The production and utilization of high-energetic explosives often pose a range of safety hazards,with sensitivity being a key factor in evaluating these risks.To investigate how temperature,particle size,and air humidity affect the responsiveness of commonly used high-energetic explosives,a series of BAM(Bundesanstalt für Materialforschung und-prüfung)impact and friction sensitivity tests were carried out to determine the critical impact energy and critical load pressure of four representative high-energetic explosives(RDX,HMX,PETN and CL-20)under different temperatures,particle sizes,and air humidity conditions.The experimental findings facilitated an examination of temperature and particle size affecting the sensitivity of high-energetic explosives,along with an assessment of the influence of air humidity on sensitivity testing.The results clearly indicate that high-energetic explosives display a substantial decline in critical reaction energy when subjected to micrometre-sized particles and an air humidity level of 45%at a temperature of 90℃.Furthermore,it was noted that the critical reaction energy of high-energetic explosives diminishes with an increase in temperature within 25℃−90℃.In the same vein,as the particle sizes of high-energetic explosives increase,so does the critical reaction energy for micrometre-sized particles.High air humidity significantly affects the sensitivity testing of high-energetic explosives,emphasizing the importance of refraining from conducting sensitivity tests in such conditions. 展开更多
关键词 high-energetic explosives TEMPERATURE particle size air humidity critical reaction energy
下载PDF
Assessment of portable FTIR and Raman spectroscopy for the detection of 2,3-dimethyl-2,3-dinitrobutane(DMDNB)in plastic explosives
7
作者 Jacky Cailes Robert Dunsmore Kathryn L.Linge 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期11-18,共8页
The Marplex Convention was established to prevent the manufacture of unmarked plastic explosives and stipulates that a volatile detection agent must be added at the time of manufacture.However,to-date,laboratory testi... The Marplex Convention was established to prevent the manufacture of unmarked plastic explosives and stipulates that a volatile detection agent must be added at the time of manufacture.However,to-date,laboratory testing remains the internationally accepted practice for identifying and quantifying the taggants stipulated in the Convention.In this project,portable FTIR and Raman instruments were tested for their ability to detect 2,3-dimethyl-2,3-dinitrobutane(DMDNB),the chemical marker incorporated in plastic explosives that are manufactured within Australia.While both FTIR and Raman instruments detected solid DMDNB(98%purity),field analysis of plastic explosives at an Australian Defence establishment showed that both FTIR and Raman spectra were matched the relevant explosive(RDX or PETN),rather than the DMDNB taggant.For all three plastic explosives tested,the concentration of DMDNB was measured by SPME-GC-MS to be between 1.8 and 2%,greater than the minimum 1%concentration stipulated by the Marplex Convention.Additional testing with a plastic explosive analogue confirmed that the minor absorption peaks that would characterize low concentrations of DMDNB were masked by absorption bands from other compounds within the solid.Thus,while both FTIR and Raman spectroscopy are suitable for detection of plastic explosives,neither rely on the presence of DMDNB for detection.It is likely that similar results would be found for other taggants stipulated by the Marplex Convention,given they are also present in concentrations less than 1%. 展开更多
关键词 Explosive ICAO taggants 2 3-Dimethyl-2 3-dinitrobutane(DMDNB) Fourier transform infrared(FTIR) Raman
下载PDF
Research Progress in Detection of Explosives by Chemical Colorimetric Method
8
作者 Lixiu He Yuefei Hu Zhiqiao Lv 《Expert Review of Chinese Chemical》 2024年第1期1-4,共4页
This article reviews the current application status and research progress of colorimetric detection methods based on chemical colorimetry in the detection of explosives.It mainly introduced colorimetric sensors,colori... This article reviews the current application status and research progress of colorimetric detection methods based on chemical colorimetry in the detection of explosives.It mainly introduced colorimetric sensors,colorimetric sensor arrays,and chemical colorimetric sensors based on novel material substrates.The application prospect of chemical colorimetric method in the field of explosives detection was prospected. 展开更多
关键词 chemical colorimetry explosives research progress
下载PDF
Numerical simulation of drop weight impact sensitivity evaluation criteria for pressed PBXs 被引量:1
9
作者 Hong-zheng Duan Yan-qing Wu +1 位作者 Kun Yang Feng-lei Huang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第1期76-90,共15页
A thorough understanding of drop-weight impacted responses for polymer-bonded explosives(PBXs)is significant to evaluate their impact sensitivity.The characteristics of the drop-weight impacted pressed PBXs including ... A thorough understanding of drop-weight impacted responses for polymer-bonded explosives(PBXs)is significant to evaluate their impact sensitivity.The characteristics of the drop-weight impacted pressed PBXs including deforming,fracturing,forming a local high-temperature region and igniting,were simulated using a coupled mechanical-thermo-chemical model integrating micro-defects evolution.A novel evaluation method for impact sensitivity is established using the relation between the input kinetic energy and the output energy due to deformation,crushing energy,local hot spot energy and ignition.The effects of impact velocity on sensitivity were analyzed and the critical local ignition impact velocity is determined as 4.0-4.5 m/s.The simulated results show that shear-crack friction heating is the dominant ignition mechanism.The region along the boundary of PBXs sample is the most hazardous regions where ignition first occur.The propagation of stress wave in PBXs causes shear-crack hotspot and bulk temperature exhibiting an approximate 45°direction evolution path,which is the main reason that dominated damage-ignition region transits from the boundary to the central of sample. 展开更多
关键词 Polymer-bonded explosives(pbxs) Drop weight impact Numerical simulation Sensitivity evaluation criterion Hotspot mechanism
下载PDF
黏结剂对喷雾干燥FOX⁃7基PBXs的性能影响 被引量:1
10
作者 杨玥 李小东 +2 位作者 董子文 孔松 王晶禹 《含能材料》 EI CAS CSCD 北大核心 2023年第5期457-466,共10页
为研究喷雾干燥制备高聚物粘结炸药(Polymer Bonded Explosives,PBXs)的包覆机理和黏结剂种类及含量对PBXs性能的影响,分别以聚酯型热塑性聚氨酯(Estane 5703)、氟树脂(F_(2314))、氟橡胶(F_(2602))和丙烯酸酯橡胶(ACM)为黏结剂,采用喷... 为研究喷雾干燥制备高聚物粘结炸药(Polymer Bonded Explosives,PBXs)的包覆机理和黏结剂种类及含量对PBXs性能的影响,分别以聚酯型热塑性聚氨酯(Estane 5703)、氟树脂(F_(2314))、氟橡胶(F_(2602))和丙烯酸酯橡胶(ACM)为黏结剂,采用喷雾干燥技术制备细化FOX-7和含有不同黏结剂种类和含量的1,1-二氨基-2,2-二硝基乙烯(FOX-7)基PBXs。分别采用场发射扫描电子显微镜(FE-SEM)、X射线衍射仪(XRD)、差示扫描量热仪(DSC)、撞击感度测试仪测试样品的表面形貌、晶型、热分解特性和撞击感度,研究黏结剂种类和含量对FOX-7基PBXs性能影响。结果表明,喷雾干燥包覆样品晶型均为α-FOX-7;Estane 5703包覆样品拥有最佳的球形度、表面光滑度和机械安全性,但表观活化能降低10.61%,F_(2602)包覆样品的热稳定性好,二者作为黏结剂均可有效降低FOX-7的撞击感度;黏结剂含量为3%~5%时,FOX-7基PBXs造型粉颗粒表面光滑,包覆黏结效果好;黏结剂含量为5%时,FOX-7基PBXs安全性能最佳。由FOX-7在熔融态下PBXs的微观形貌,分析喷雾干燥制备PBXs中黏结剂的包覆结构和降感机理,对比细化FOX-7和PBXs的撞击感度和表面元素原子比及化学态变化对其进行验证。 展开更多
关键词 1 1-二氨基-2 2-二硝基乙烯(FOX-7) 高聚物黏结炸药(pbxs) 复配黏结剂 喷雾干燥
下载PDF
Nacre-inspired interface structure design of polymer bonded explosives toward significantly enhanced mechanical performance
11
作者 Peng Wang You-long Chen +6 位作者 Li Meng Yin-shuang Sun Yu Dai Xin Li Jie Chen Zhi-jian Yang Guan-song He 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第9期83-92,共10页
Realizing effective enhancement to the structure of interface region between explosive crystals and polymer binder plays a key role in improving the mechanical properties of the current polymer bonded explosives(PBXs)... Realizing effective enhancement to the structure of interface region between explosive crystals and polymer binder plays a key role in improving the mechanical properties of the current polymer bonded explosives(PBXs).Herein,inspired by the structure of natural nacre which possesses outstanding mechanical performance,a kind of nacre-like structural layer is constructed in the interface region of PBXs composites,making use of two-dimensional graphene sheets and one-dimensional bio-macromolecules of cellulose as inorganic and organic building blocks,respectively.Our results reveal that the constructed nacre-like structural layer can effectively improve the interfacial strength and then endow the PBXs composites with significantly enhanced mechanical properties involving of creep resistance,Brazilian strength and fracture toughness,demonstrating the obvious advantage of such bioinspired interface structure design strategy.In addition,the thermal conduction performance of PBXs composites also exhibits noticeable enhancement due to the remarkable phonon transport capability endowed by the asdesigned nacre-like structural layer.We believe this work provides a novel design route to conquer the issue of weak interfacial strength in PBXs composites and greatly increase the comprehensive properties for better meeting the higher requirements proposed to the explosive part of weapon equipment in new era. 展开更多
关键词 Polymer bonded explosives Nacre-like structural layer GRAPHENE CELLULOSE Mechanical properties
下载PDF
Self-healed microcracks in polymer bonded explosives via thermoreversible covalent bond and hydrogen actions
12
作者 Yu-bin Li Xu Zhao +5 位作者 Ya-jun Luo Zhi-jian Yang Li-ping Pan Cheng-cheng Zeng Cong-mei Lin Xue Zheng 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第10期183-194,共12页
Polymeric materials used for the polymer bonded explosive(PBX)or other energetic composite materials(ECMs)that simultaneously possess excellent mechanical properties and high self-healing ability,convenient healing,an... Polymeric materials used for the polymer bonded explosive(PBX)or other energetic composite materials(ECMs)that simultaneously possess excellent mechanical properties and high self-healing ability,convenient healing,and facile fabrication are always a huge challenge.Herein,self-healing linear polyurethane elastomers(PTMEG2000-IPDI-DAPU,denoted as 2I-DAPU)with high healing efficiency and mechanical properties were facilely fabricated by constructing reversible covalent bonds and dynamic hard domains into polymer chains.Furthermore,a TATB-based PBX using as-prepared 2I-DAPU polymer as the binder was constructed,disclosing an excellent self-healing property to heal cracks generated during fabrication,transportation and storage.The damage healing manner of such a PBX sample was investigated by means of prefabricated damage through mechanical load,heal treatment via heating at high temperature,and CT-scanning the inner structure and mechanical property characterization via Brazilian test.The self-healing mechanism of internal damage in PBX was preliminarily explored.We propose that this 2I-DAPU binder with Diels-Alder bonds could generate plentiful active surface groups resulting from damage and drive self-healing at fitting temperature and increase the slightly packed hard phase via incorporating a small amount of hydrogen bonds.This work may offer a novel strategy for improving mechanical property and healing ability in the field of self-healing material which could help expand its applications with enhanced versatility in mechanical-enhanced functional materials. 展开更多
关键词 Polymer bonded explosives Self-healing polymers Diels-alder(DA)bonds H-BOND
下载PDF
HMX基高聚物粘结炸药界面增强的粒径效应
13
作者 刘佳辉 曾诚成 +3 位作者 郑胜军 庞海燕 杨志剑 聂福德 《含能材料》 EI CAS CSCD 北大核心 2024年第10期1091-1098,共8页
为研究炸药晶体粒径对高聚物粘结炸药(PBX)力学性能及界面增强效果的影响规律,以4种不同粒径HMX(160μm,60μm,25μm和150 nm)为主体炸药,氟树脂为粘结剂,中性聚合物键合剂为界面增强剂,制备了8种HMX基PBX。采用压缩应力应变试验、巴西... 为研究炸药晶体粒径对高聚物粘结炸药(PBX)力学性能及界面增强效果的影响规律,以4种不同粒径HMX(160μm,60μm,25μm和150 nm)为主体炸药,氟树脂为粘结剂,中性聚合物键合剂为界面增强剂,制备了8种HMX基PBX。采用压缩应力应变试验、巴西试验分别获得8种PBX在常温(20℃)和高温下(60℃)的压缩和拉伸力学性能,采用动态热机械分析仪的三点弯曲模式获得储能模量和力学损耗因子,采用扫描电镜对PBX断面进行表征。结果表明,PBX的压缩强度和拉伸强度随HMX粒径的减小而增大,纳米HMX在力学增强方面具有很好的效果。20℃以纳米HMX为基的PBX-nano压缩强度和拉伸强度可分别达到61.3 MPa和5.7 MPa,较以160μm HMX为基的PBX-L可分别提高73.1%和63.5%。添加中性聚合物键合剂后,不同粒径的HMX基PBX压缩力学强度和拉伸力学强度均得到提高,纳米HMX的增强效应尤其显著,PBX-nano-M在20℃和60℃下的拉伸强度分别可达10.4 MPa和5.8 MPa,较PBX-nano可分别提高82.6%和101.4%。当HMX平均粒径从百微米减小至百纳米,炸药件发生界面脱粘/损伤乃至断裂所需的断裂功越大,拉伸力学强度提升幅度越大。 展开更多
关键词 高聚物粘结炸药(PBX) 界面 粒径 力学性能
下载PDF
Combustion crack-network reaction evolution model for highly-confined explosives
14
作者 Zhuo-ping Duan Meng-Jing Bai +2 位作者 Zhi-ling Bai Xin-jie Wang Feng-lei Huang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第8期54-67,共14页
The evolution behavior of combustion crack reaction of highly confined solid explosives after non-shock ignition is governed by multiple dynamic processes,including intrinsic combustion of explosives,crack propagation... The evolution behavior of combustion crack reaction of highly confined solid explosives after non-shock ignition is governed by multiple dynamic processes,including intrinsic combustion of explosives,crack propagation,and rapid growth of combustion surface area.Here,the pressure increase can accelerate the combustion rate of explosives,and the crack propagation can enlarge the combustion surface area.The coupling between these two effects leads to the self-enhanced combustion of explosive charge system,which is the key mechanism for the reaction development after ignition.In this study,combustion cracknetwork(CCN) model is established to describe the evolution of combustion crack reaction of highly confined solid explosives after non-shock ignition and quantify the reaction violence.The feasibility of the model is verified by comparing the computational and experimental results.The results reveal that an increase in charge structure size causes an increase in the time of crack pressurization and extension of cracks due to the high temperature-generated gas flow and surface combustion during the initial stage of explosive reaction,but when the casing is fractured,the larger the charge structure,the more violent the late reaction and the larger the charge reaction degree.The input pressure has no obvious influence on the final reaction violence.Further,a larger venting hole area leads to better pressure relief effect,which causes slower pressure growth inside casing.Larger reserved ullage volume causes longer lowpressure induction stage,which further restrains the internal pressure growth.Furthermore,the stronger the casing constraint,the more rapid the self-enhanced combustion of the high temperaturegenerated gas,which results in more violent charge reaction and larger charge reaction degree during casing break.Overall,the proposed model can clarify the effects of intrinsic combustion rate of explosives,charge structure size,input pressure,relief area,ullage volume,and constraint strength on the reaction evolution,which can provide theoretical basis for violence evaluation and safety design for ammunition under accident stimulus. 展开更多
关键词 Solid explosives Non-shock ignition Self-enhanced combustion Combustion crack-network(CCN)model Relief area Reaction degree
下载PDF
PBX炸药缝隙挤压加载下的破裂模式及点火响应
15
作者 胡秋实 尚海林 +2 位作者 吴兆奎 廖深飞 傅华 《兵工学报》 EI CAS CSCD 北大核心 2024年第9期3135-3146,共12页
武器装药服役过程中内部容易产生缝隙等结构弱环。针对圆形缝隙开展PBX-3炸药及其模拟材料缝隙挤压加载实验。通过结构设计,使样品内部的宏观裂纹在实验结束后的拆卸过程中不发生破坏,保留裂纹原始形貌以便于观测分析。采用45°镜... 武器装药服役过程中内部容易产生缝隙等结构弱环。针对圆形缝隙开展PBX-3炸药及其模拟材料缝隙挤压加载实验。通过结构设计,使样品内部的宏观裂纹在实验结束后的拆卸过程中不发生破坏,保留裂纹原始形貌以便于观测分析。采用45°镜反射成像结合高速摄影,记录样品缝隙挤压的动态全过程。采用欧拉-拉格朗日耦合方法对炸药缝隙挤压过程进行仿真计算,用未点火情况下的实验数据进行模型参数校核,使用校核后的模型对点火情况进行再计算。基于做功和加热增加物体内能的等效性,对主导点火机制和点火时间进行分析。研究结果表明:缝隙挤压加载下样品内部形成滑移区和死区,两区分界面为锥面;对于φ0.8 mm直径的缝隙,强围压下挤压速度仅4.2 m/s即可导致点火,点火后的燃烧反应烈度随缝隙尺寸的减小而增加;数值模拟得到的挤压应力、速度及破裂模式与实验结果符合较好,滑移区与死区之间的挤压摩擦功率高达数千W/cm^(2),点火时间为百μs量级,引发点火的重要机制是滑移区-死区界面的挤压摩擦温升。 展开更多
关键词 PBX炸药 缝隙挤压 破裂模式 点火 欧拉-拉格朗日耦合
下载PDF
RDX基PBX在高温条件下热损伤表征试验研究
16
作者 吴艳青 潘帅 江鹏 《安全与环境学报》 CAS CSCD 北大核心 2024年第3期891-897,共7页
炸药热损伤特征及演化行为对装药安全性具有重要影响。为探究高聚物黏结剂炸药(Polymer Binder Explosive,PBX)在不同温度载荷下的内部损伤和演化行为,对无约束状态下炸药进行烤燃试验,使用分析天平监测炸药的质量变化,并采用显微镜和... 炸药热损伤特征及演化行为对装药安全性具有重要影响。为探究高聚物黏结剂炸药(Polymer Binder Explosive,PBX)在不同温度载荷下的内部损伤和演化行为,对无约束状态下炸药进行烤燃试验,使用分析天平监测炸药的质量变化,并采用显微镜和扫描电子显微镜等技术对炸药样品的表面和内部损伤进行表征。结果表明:温度越高,炸药的质量损失越大且损失速率越快;加热过程中黏结剂先发生熔化,随着加热时间变长和温度升高,黏结剂熔化程度增大,流动性增强,气体从炸药表面孔洞内逸出,孔洞增多且尺寸变大;温度越高炸药内部出现的孔隙越多,孔隙尺寸越大,孔隙主要是由于气体从试样内部逸出形成;炸药内部比表面积变化趋势为上升—下降—上升,其变化趋势受到化学反应速率和黏结剂的流动及损失影响。黏结剂材料的热稳定性是影响炸药热损伤演化行为的重要因素。 展开更多
关键词 安全工程 高聚物黏结剂炸药(PBX) 烤燃 热损伤 细观表征
下载PDF
两种新型炸药的准静态力学性能
17
作者 王锋 李东伟 +1 位作者 朱英中 肖伟 《兵工自动化》 北大核心 2024年第6期9-10,20,共3页
为推动炸药在侵爆战斗部中的应用,采用万能材料试验机对HMX基压装高聚物粘结炸药(polymer bonded explosive,PBX)和DNAN基熔铸炸药的准静态力学性能进行研究。获得2种炸药在2.0×10-5 s-1~1.0×10-3 s-1应变率范围内的应力应变... 为推动炸药在侵爆战斗部中的应用,采用万能材料试验机对HMX基压装高聚物粘结炸药(polymer bonded explosive,PBX)和DNAN基熔铸炸药的准静态力学性能进行研究。获得2种炸药在2.0×10-5 s-1~1.0×10-3 s-1应变率范围内的应力应变试验数据。结果表明:2种炸药的力学性能均具有明显的应变率效应,但前者失效应变约为后者的6倍,呈现出较大区别。基于唯象方法,建立描述2种炸药1维准静态压缩力学行为的幂指数硬化本构模型,并拟合得到本构模型参数。通过与试验结果对比表明,模型计算结果与试验结果误差小于3%,吻合较好。该研究结果可为描述2种炸药的力学行为提供参考。 展开更多
关键词 压装PBX DNAN基熔铸炸药 力学性能 本构关系
下载PDF
含孔洞炸药晶体HMX冲击响应的分子动力学模拟 被引量:1
18
作者 周婷婷 楼建锋 《含能材料》 EI CSCD 北大核心 2024年第1期65-75,共11页
动载荷下炸药晶体缺陷与热点形成的关联是当前含能材料领域的研究热点之一,理解热点形成机制及其对炸药起爆和感度的影响对于炸药安全性评估和研制安全弹药至关重要。本研究采用ReaxFF反应力场和分子动力学方法,对含圆柱形孔洞的炸药单... 动载荷下炸药晶体缺陷与热点形成的关联是当前含能材料领域的研究热点之一,理解热点形成机制及其对炸药起爆和感度的影响对于炸药安全性评估和研制安全弹药至关重要。本研究采用ReaxFF反应力场和分子动力学方法,对含圆柱形孔洞的炸药单晶奥克托金(HMX)在冲击载荷下的动态响应进行了研究,并探究了孔洞尺寸和双孔洞的影响。结果表明,冲击载荷下孔洞的塌缩过程分为3个阶段,即孔洞上游的塑性变形、上游原子向孔洞中心和下游运动形成流动原子、流动原子与下游碰撞。热点形成的主要机制是流动原子与下游碰撞使得动能转换为热能导致温度快速升高。热点的高温诱发了局部化学反应,HMX分子中N─NO2键断裂生成NO2是主要的初始反应机制。圆柱形孔洞的塌缩过程和热点形成机制与球形孔洞是相似的,但圆柱形孔洞的汇聚效应更弱、形成的流动原子速度更低,导致热点温度显著降低、化学反应更弱。此外,圆柱形孔洞在塌缩过程中在其周围形成了剪切带,这在球形孔洞中没有出现。随着孔洞尺寸的增大,流动原子的速度提高、剪切带变宽、热点温度升高且面积增大,进而引发了更剧烈的化学反应。对于沿冲击方向排布相距一个孔洞半径的双孔洞,孔洞塌缩过程与单孔洞是类似的,但由于冲击波在传过上游孔洞后压力有所降低,导致下游孔洞在塌缩过程中形成的流动原子速度更小、热点温度更低。本研究有助于深入理解晶体缺陷对炸药热点形成与起爆机理的作用,为宏观理论建模提供物理机制与规律认识。 展开更多
关键词 炸药 孔洞 热点 化学反应 分子动力学
下载PDF
非理想炸药水中爆炸载荷相似律数值仿真
19
作者 谷鸿平 陈达 +3 位作者 张立建 王怀华 吕永柱 栗保华 《火炸药学报》 EI CAS CSCD 北大核心 2024年第8期686-695,I0002,共11页
为研究不同尺度非理想炸药水中爆炸载荷的相似性,采用LS-DYNA软件的S-ALE算法,构建了基于JWL-Miller状态方程描述的非理想炸药水中爆炸载荷数值计算模型;利用典型试验数据对计算模型参数进行了标定,匹配设置了典型RDX基非理想炸药的JWL-... 为研究不同尺度非理想炸药水中爆炸载荷的相似性,采用LS-DYNA软件的S-ALE算法,构建了基于JWL-Miller状态方程描述的非理想炸药水中爆炸载荷数值计算模型;利用典型试验数据对计算模型参数进行了标定,匹配设置了典型RDX基非理想炸药的JWL-Miller状态方程参数;通过不同尺度炸药在不同水域环境条件下的爆炸过程模拟,分析了爆炸载荷特征参数的相似性。结果表明,影响非理想炸药水中爆炸冲击波压力峰值相似律的主要因素是其自身的非理想特性;水域环境因素(如自由面及静水压力梯度等)会对气泡脉动周期与半径的相似律产生较大影响。对于15%允许误差范围的工程仿真而言,0.53~5.30 m/kg 1/3比例距离(约10~100倍炸药半径)范围内,非理想炸药自由场水中爆炸载荷参数相似律可近似满足,与理想炸药的相似律特征基本一致,工程可用。基于JWL-Miller状态方程统一参数描述的非理想炸药默认其后燃反应是稳定且完全的。在实际中,由于水下非理想炸药受到复杂的化学反应动力学的控制,几何尺寸效应仍有可能导致非理想成分释能过程的较大差异,因此,精细化数值仿真需要针对不同比例距离或不同尺度模型来匹配不同的Miller模型参数,爆炸载荷相似律也可能在更有限的尺度范围内成立。 展开更多
关键词 爆炸力学 JWL-Miller状态方程 非理想炸药 水中爆炸 相似律 含铝炸药
下载PDF
智能算法优化XGBoost的聚能-爆破装药比冲量预测 被引量:1
20
作者 刘芳 李士伟 +2 位作者 卢熹 郭策安 马元婧 《小型微型计算机系统》 CSCD 北大核心 2024年第5期1076-1082,共7页
为了探索聚能-爆破装药结构、爆破距离等参数与比冲量间的复杂关系,提出一种智能算法优化极端梯度提升(eXtreme Gradient Boosting,XGBoost)的聚能-爆破装药比冲量预测模型.采用相关性分析方法,探寻聚能-爆破装药结构参数、爆破距离参... 为了探索聚能-爆破装药结构、爆破距离等参数与比冲量间的复杂关系,提出一种智能算法优化极端梯度提升(eXtreme Gradient Boosting,XGBoost)的聚能-爆破装药比冲量预测模型.采用相关性分析方法,探寻聚能-爆破装药结构参数、爆破距离参数与比冲量之间的关联程度.使用具有数据并行处理能力和集成学习思想的XGBoost算法,挖掘结构参数、爆破距离参数与比冲量间的潜在非线性关系.基于粒子群算法(Particle Swarm Optimization,PSO)良好的全局搜索能力和蚁群算法(Ant Colony Optimization,ACO)优良的局部搜索能力,设计双智能算法优化XGBoost的融合预测模型PSO-ACO-XGBoost,提高聚能-爆破装药比冲量预测精度.PSO和ACO分别用于搜索XGBoost超参数解空间的全局最优解与局部最优解.实验结果表明,PSO-ACO-XGBoost模型相较于BP、XGBoost、PSO-BP、ACO-XGBoost等其它8种预测模型,在预测精度、拟合程度、速度和稳定性等方面具有最佳性能. 展开更多
关键词 聚能装药 爆破装药 比冲量 极端梯度提升 粒子群算法 蚁群算法
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部