期刊文献+
共找到248篇文章
< 1 2 13 >
每页显示 20 50 100
Two-dimensional cross entropy multi-threshold image segmentation based on improved BBO algorithm 被引量:2
1
作者 LI Wei HU Xiao-hui WANG Hong-chuang 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2018年第1期42-49,共8页
In order to improve the global search ability of biogeography-based optimization(BBO)algorithm in multi-threshold image segmentation,a multi-threshold image segmentation based on improved BBO algorithm is proposed.Whe... In order to improve the global search ability of biogeography-based optimization(BBO)algorithm in multi-threshold image segmentation,a multi-threshold image segmentation based on improved BBO algorithm is proposed.When using BBO algorithm to optimize threshold,firstly,the elitist selection operator is used to retain the optimal set of solutions.Secondly,a migration strategy based on fusion of good solution and pending solution is introduced to reduce premature convergence and invalid migration of traditional migration operations.Thirdly,to reduce the blindness of traditional mutation operations,a mutation operation through binary computation is created.Then,it is applied to the multi-threshold image segmentation of two-dimensional cross entropy.Finally,this method is used to segment the typical image and compared with two-dimensional multi-threshold segmentation based on particle swarm optimization algorithm and the two-dimensional multi-threshold image segmentation based on standard BBO algorithm.The experimental results show that the method has good convergence stability,it can effectively shorten the time of iteration,and the optimization performance is better than the standard BBO algorithm. 展开更多
关键词 two-dimensional cross entropy biogeography-based optimization(BBO)algorithm multi-threshold image segmentation
下载PDF
Foreign Fiber Image Segmentation Based on Maximum Entropy and Genetic Algorithm 被引量:3
2
作者 Liping Chen Xiangyang Chen +2 位作者 Sile Wang Wenzhu Yang Sukui Lu 《Journal of Computer and Communications》 2015年第11期1-7,共7页
In machine-vision-based systems for detecting foreign fibers, due to the background of the cotton layer has the absolute advantage in the whole image, while the foreign fiber only account for a very small part, and w... In machine-vision-based systems for detecting foreign fibers, due to the background of the cotton layer has the absolute advantage in the whole image, while the foreign fiber only account for a very small part, and what’s more, the brightness and contrast of the image are all poor. Using the traditional image segmentation method, the segmentation results are very poor. By adopting the maximum entropy and genetic algorithm, the maximum entropy function was used as the fitness function of genetic algorithm. Through continuous optimization, the optimal segmentation threshold is determined. Experimental results prove that the image segmentation of this paper not only fast and accurate, but also has strong adaptability. 展开更多
关键词 FOREIGN Fibers image segmentation MAXIMUM entropy GENETIC algorithm
下载PDF
A New Adaptive Image Segmentation Method 被引量:2
3
作者 沈庭芝 方子文 +1 位作者 吴玲艳 王飞 《Journal of Beijing Institute of Technology》 EI CAS 1998年第3期316-321,共6页
Aim Researching the optimal thieshold of image segmentation. M^ethods An adaptiveimages segmentation method based on the entropy of histogram of gray-level picture and genetic. algorithm (GA) was presental. Results ... Aim Researching the optimal thieshold of image segmentation. M^ethods An adaptiveimages segmentation method based on the entropy of histogram of gray-level picture and genetic. algorithm (GA) was presental. Results In our approach, the segmentation problem was formulated as an optimization problem and the fitness of GA which can efficiently search the segmentation parameter space was regarded as the quality criterion. Conclusion The methodcan be adapted for optimal behold segmentation. 展开更多
关键词 genetic algorithm image segmentation entropy of histogram segmenting threshold
下载PDF
A Semi-Vectorial Morphological Segmentation Multi-Component Images of Coumarins on Thin Layer Combined with Laser for Better Separation
4
作者 Theodore Guié Toa Bi Marcelin Sandjé +2 位作者 Régnima G. Oscar Sie Ouattara Alain Clement 《Open Journal of Applied Sciences》 2022年第6期1054-1068,共15页
In this work, we propose an approach for the separation of coumarins from thin-layer morphological segmentation based on the acquisition of multicomponent images integrating different types of coumarins. The first ste... In this work, we propose an approach for the separation of coumarins from thin-layer morphological segmentation based on the acquisition of multicomponent images integrating different types of coumarins. The first step is to make a segmentation by region, by thresholding, by contour, etc. of each component of the digital image. Then, we proceeded to the calculations of parameters of the regions such as the color standard deviation, the color entropy, the average color of the pixels, the eccentricity from an algorithm on the matlab software. The mean color values at<sub>R</sub> = 91.20 in red, at<sub>B</sub> = 213.21 in blue showed the presence of samidin in the extract. The color entropy values H<sub>G</sub> = 5.25 in green and H<sub>B</sub> = 4.04 in blue also show the presence of visnadine in the leaves of Desmodium adscendens. These values are used to consolidate the database of separation and discrimination of the types of coumarins. The relevance of our coumarin separation or coumarin recognition method has been highlighted compared to other methods, such as the one based on the calculation of frontal ratios which cannot discriminate between two coumarins having the same frontal ratio. The robustness of our method is proven with respect to the separation and identification of some coumarins, in particular samidin and anglicine. 展开更多
关键词 Identification Thin Layer Secondary Metabolites COUMARINS image Acquisition segmentation Standard Deviation entropy Average Color algorithm Matlab
下载PDF
Ground-Based Cloud Using Exponential Entropy/Exponential Gray Entropy and UPSO
5
作者 吴一全 殷骏 毕硕本 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第6期599-608,共10页
Objective and accurate classification model or method of cloud image is a prerequisite for accurate weather monitoring and forecast.Thus safety of aircraft taking off and landing and air flight can be guaranteed.Thres... Objective and accurate classification model or method of cloud image is a prerequisite for accurate weather monitoring and forecast.Thus safety of aircraft taking off and landing and air flight can be guaranteed.Thresholding is a kind of simple and effective method of cloud classification.It can realize automated ground-based cloud detection and cloudage observation.The existing segmentation methods based on fixed threshold and single threshold cannot achieve good segmentation effect.Thus it is difficult to obtain the accurate result of cloud detection and cloudage observation.In view of the above-mentioned problems,multi-thresholding methods of ground-based cloud based on exponential entropy/exponential gray entropy and uniform searching particle swarm optimization(UPSO)are proposed.Exponential entropy and exponential gray entropy make up for the defects of undefined value and zero value in Shannon entropy.In addition,exponential gray entropy reflects the relative uniformity of gray levels within the cloud cluster and background cluster.Cloud regions and background regions of different gray level ranges can be distinguished more precisely using the multi-thresholding strategy.In order to reduce computational complexity of original exhaustive algorithm for multi-threshold selection,the UPSO algorithm is adopted.It can find the optimal thresholds quickly and accurately.As a result,the real-time processing of segmentation of groundbased cloud image can be realized.The experimental results show that,in comparison with the existing groundbased cloud image segmentation methods and multi-thresholding method based on maximum Shannon entropy,the proposed methods can extract the boundary shape,textures and details feature of cloud more clearly.Therefore,the accuracies of cloudage detection and morphology classification for ground-based cloud are both improved. 展开更多
关键词 detection of ground-based cloud multi-thresholding of cloud image exponential entropy exponential gray entropy uniform searching particle swarm optimization(UPSO)
下载PDF
ENTROPY TOLERANT FUZZY C-MEANS IN MEDICAL IMAGES
6
作者 S.R.KANNAN S.RAMATHILAGAM +1 位作者 R.DEVI YUEH-MIN HUANG 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2011年第4期447-462,共16页
Segmenting the Dynamic Contrast-Enhanced Breast Magnetic Resonance Images(DCE-BMRI)is an extremely important task to diagnose the disease because it has the highest specificity when acquired with high temporal and spa... Segmenting the Dynamic Contrast-Enhanced Breast Magnetic Resonance Images(DCE-BMRI)is an extremely important task to diagnose the disease because it has the highest specificity when acquired with high temporal and spatial resolution and is also corrupted by heavy noise,outliers,and other imaging artifacts.In this paper,we intend to develop efficient robust segmentation algorithms based on fuzzy clustering approach for segmenting the DCE-BMRs.Our proposed segmentation algorithms have been amalgamated with effective kernel-induced distance measure on standard fuzzy c-means algorithm along with the spatial neighborhood information,entropy term,and tolerance vector into a fuzzy clustering structure for segmenting the DCE-BMRI.The significant feature of our proposed algorithms is its capability tofind the optimal membership grades and obtain effective cluster centers automatically by minimizing the proposed robust objective functions.Also,this article demonstrates the superiority of the proposed algorithms for segmenting DCE-BMRI in comparison with other recent kernel-based fuzzy c-means techniques.Finally the clustering accuracies of the proposed algorithms are validated by using silhouette method in comparison with existed fuzzy clustering algorithms. 展开更多
关键词 Fuzzy clustering algorithmS entropy method segmentation medical images
下载PDF
Two-Dimensional Entropy Method Based on Genetic Algorithm 被引量:4
7
作者 王蕾 沈庭芝 《Journal of Beijing Institute of Technology》 EI CAS 2002年第2期184-188,共5页
Two dimensional(2 D) entropy method has to pay the price of time when applied to image segmentation. So the genetic algorithm is introduced to improve the computational efficiency of the 2 D entropy method. The pro... Two dimensional(2 D) entropy method has to pay the price of time when applied to image segmentation. So the genetic algorithm is introduced to improve the computational efficiency of the 2 D entropy method. The proposed method uses both the gray value of a pixel and the local average gray value of an image. At the same time, the simple genetic algorithm is improved by using better reproduction and crossover operators. Thus the proposed method makes up the 2 D entropy method’s drawback of being time consuming, and yields satisfactory segmentation results. Experimental results show that the proposed method can save computational time when it provides good quality segmentation. 展开更多
关键词 THRESHOLDING image segmentation entropy method genetic algorithm
下载PDF
Fast recursive algorithm for two-dimensional Tsallis entropy thresholding method 被引量:2
8
作者 Tang Yinggan Di Qiuyan Guan Xinping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第3期619-624,共6页
Recently, a two-dimensional (2-D) Tsallis entropy thresholding method has been proposed as a new method for image segmentation. But the computation complexity of 2-D Tsallis entropy is very large and becomes an obst... Recently, a two-dimensional (2-D) Tsallis entropy thresholding method has been proposed as a new method for image segmentation. But the computation complexity of 2-D Tsallis entropy is very large and becomes an obstacle to real time image processing systems. A fast recursive algorithm for 2-D Tsallis entropy thresholding is proposed. The key variables involved in calculating 2-D Tsallis entropy are written in recursive form. Thus, many repeating calculations are avoided and the computation complexity reduces to O(L2) from O(L4). The effectiveness of the proposed algorithm is illustrated by experimental results. 展开更多
关键词 image segmentation THRESHOLDING Tsallis entropy fast recursive algorithm
下载PDF
A Context Sensitive Multilevel Thresholding Using Swarm Based Algorithms 被引量:6
9
作者 Shreya Pare Anil Kumar +1 位作者 Varun Bajaj Girish Kumar Singh 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第6期1471-1486,共16页
In this paper, a comprehensive energy function is used to formulate the three most popular objective functions:Kapur's, Otsu and Tsalli's functions for performing effective multilevel color image thresholding.... In this paper, a comprehensive energy function is used to formulate the three most popular objective functions:Kapur's, Otsu and Tsalli's functions for performing effective multilevel color image thresholding. These new energy based objective criterions are further combined with the proficient search capability of swarm based algorithms to improve the efficiency and robustness. The proposed multilevel thresholding approach accurately determines the optimal threshold values by using generated energy curve, and acutely distinguishes different objects within the multi-channel complex images. The performance evaluation indices and experiments on different test images illustrate that Kapur's entropy aided with differential evolution and bacterial foraging optimization algorithm generates the most accurate and visually pleasing segmented images. 展开更多
关键词 COLOR image segmentation Kapur's entropy MULTILEVEL THRESHOLDING OTSU method SWARM based optimization algorithms Tsalli's entropy
下载PDF
Multilevel Image Thresholding Using Tsallis Entropy and Cooperative Pigeon-inspired Optimization Bionic Algorithm 被引量:6
10
作者 Yiin Wang Guangbin Zhang Xiaofeng Zhang 《Journal of Bionic Engineering》 SCIE EI CSCD 2019年第5期954-964,共11页
Multilevel thresholding is a simple and effective method in numerous image segmentation applications.In this paper,we propose a new multilevel thresholding method that uses cooperative pigeon-inspired optimization alg... Multilevel thresholding is a simple and effective method in numerous image segmentation applications.In this paper,we propose a new multilevel thresholding method that uses cooperative pigeon-inspired optimization algorithm with dynamic distance threshold(CPIOD)for boosting applicability and the practicality of the optimum thresholding techniques.Firstly,we employ the cooperative be havior in the map and compass operator of the pigeon-inspired optimization algorithm to overcome the"curse of dimensionality"and help the algorithm converge fast.Then,a distance threshold is added to maintain the diversity of the pigeon population and increase the vitality to avoid local optimization.Tsallis entropy is used as the objective function to evaluate the optimum thresholds for the considered gray scale images.Four benchmark images are applied to test the property and the stability of the proposed CPIOD algorithm and three other optimization algorithms in multilevel thresholding problems.Segmentation results of four optimization algorithms show that CPIOD algorithm can not only get higher quality segmentation results,but also has better stability. 展开更多
关键词 bionic algorithm MULTILEVEL thresholding TSALLIS entropy pigeon-inspired OPTIMIZATION image segmentation
原文传递
Renal Pathology Images Segmentation Based on Improved Cuckoo Search with Diffusion Mechanism and Adaptive Beta-Hill Climbing 被引量:1
11
作者 Jiaochen Chen Zhennao Cai +4 位作者 Huiling Chen Xiaowei Chen José Escorcia-Gutierrez Romany F.Mansour Mahmoud Ragab 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第5期2240-2275,共36页
Lupus Nephritis(LN)is a significant risk factor for morbidity and mortality in systemic lupus erythematosus,and nephropathology is still the gold standard for diagnosing LN.To assist pathologists in evaluating histopa... Lupus Nephritis(LN)is a significant risk factor for morbidity and mortality in systemic lupus erythematosus,and nephropathology is still the gold standard for diagnosing LN.To assist pathologists in evaluating histopathological images of LN,a 2D Rényi entropy multi-threshold image segmentation method is proposed in this research to apply to LN images.This method is based on an improved Cuckoo Search(CS)algorithm that introduces a Diffusion Mechanism(DM)and an Adaptiveβ-Hill Climbing(AβHC)strategy called the DMCS algorithm.The DMCS algorithm is tested on 30 benchmark functions of the IEEE CEC2017 dataset.In addition,the DMCS-based multi-threshold image segmentation method is also used to segment renal pathological images.Experimental results show that adding these two strategies improves the DMCS algorithm's ability to find the optimal solution.According to the three image quality evaluation metrics:PSNR,FSIM,and SSIM,the proposed image segmentation method performs well in image segmentation experiments.Our research shows that the DMCS algorithm is a helpful image segmentation method for renal pathological images. 展开更多
关键词 multi-threshold image segmentation 2D Rényi entropy Renal pathology Cuckoo search algorithm Swarm intelligence algorithms Bionic algorithm
原文传递
Multi-verse Optimizer with Rosenbrock and Diffusion Mechanisms for Multilevel Threshold Image Segmentation from COVID-19 Chest X-Ray Images 被引量:1
12
作者 Yan Han Weibin Chen +1 位作者 Ali Asghar Heidari Huiling Chen 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第3期1198-1262,共65页
Coronavirus Disease 2019(COVID-19)is the most severe epidemic that is prevalent all over the world.How quickly and accurately identifying COVID-19 is of great significance to controlling the spread speed of the epidem... Coronavirus Disease 2019(COVID-19)is the most severe epidemic that is prevalent all over the world.How quickly and accurately identifying COVID-19 is of great significance to controlling the spread speed of the epidemic.Moreover,it is essential to accurately and rapidly identify COVID-19 lesions by analyzing Chest X-ray images.As we all know,image segmentation is a critical stage in image processing and analysis.To achieve better image segmentation results,this paper proposes to improve the multi-verse optimizer algorithm using the Rosenbrock method and diffusion mechanism named RDMVO.Then utilizes RDMVO to calculate the maximum Kapur’s entropy for multilevel threshold image segmentation.This image segmentation scheme is called RDMVO-MIS.We ran two sets of experiments to test the performance of RDMVO and RDMVO-MIS.First,RDMVO was compared with other excellent peers on IEEE CEC2017 to test the performance of RDMVO on benchmark functions.Second,the image segmentation experiment was carried out using RDMVO-MIS,and some meta-heuristic algorithms were selected as comparisons.The test image dataset includes Berkeley images and COVID-19 Chest X-ray images.The experimental results verify that RDMVO is highly competitive in benchmark functions and image segmentation experiments compared with other meta-heuristic algorithms. 展开更多
关键词 COVID-19 Multilevel threshold image segmentation Kapur’s entropy Multi-verse optimizer Meta-heuristic algorithm Bionic algorithm
原文传递
月球探测器鲁棒环形山检测及光学导航方法
13
作者 吴鹏 穆荣军 +1 位作者 邓雁鹏 崔乃刚 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第2期238-246,共9页
针对月球探测器环形山检测方法受光照影响、鲁棒性差的问题,本文提出一种基于极大熵阈值三值化的鲁棒环形山检测算法。采用不同滤波核对图像进行去噪平滑,然后对处理后的图像进行极大熵阈值分割、将图像信息三值化,去除图像对光源的敏感... 针对月球探测器环形山检测方法受光照影响、鲁棒性差的问题,本文提出一种基于极大熵阈值三值化的鲁棒环形山检测算法。采用不同滤波核对图像进行去噪平滑,然后对处理后的图像进行极大熵阈值分割、将图像信息三值化,去除图像对光源的敏感性,同时最大程度保留图像信息;提出一种归一化多指标约束环形山匹配和拟合方法完成环形山提取,将环形山提取算法应用于光学导航中进行打靶实验验证算法实时性表现。仿真结果表明:与传统基于形态学或自适应边缘检测的方法相比,本文方法在较大尺度条件下提取出连续、光滑的环形山边缘,有效环形山数量提升35%以上,同时实时性更好、计算消耗降低40%;基于鲁棒环形山提取的光学导航算法实时性更好。 展开更多
关键词 环形山检测 极大熵阈值 月球探测 光学导航 障碍感知与规避 图像分割 月球探测器 信息熵
下载PDF
熵最优与改进SCA的图像分割及其图像识别应用
14
作者 孙博玲 孙博文 《计算机工程与设计》 北大核心 2024年第5期1516-1524,共9页
针对传统图像分割效率低、精度差的不足,提出一种混合变异正余弦算法的多阈值图像分割方法。为提高SCA算法的寻优性能,设计拉丁超立方种群初始化改进种群多样性;以非线性转换因子动态调节算法搜索能力;融入惯性权重机制提升算法全局寻优... 针对传统图像分割效率低、精度差的不足,提出一种混合变异正余弦算法的多阈值图像分割方法。为提高SCA算法的寻优性能,设计拉丁超立方种群初始化改进种群多样性;以非线性转换因子动态调节算法搜索能力;融入惯性权重机制提升算法全局寻优;结合高斯和拉普拉斯分布混合变异对个体扰动,使算法跳离局部最优。将Cross熵作为适应度函数,利用HMSCA求解分割阈值。实验结果表明,该算法可以提升图像分割精度和效率。将其应用于火灾图像识别,能够实现火焰源与背景分离,得到更好的分割效果。 展开更多
关键词 图像分割 正余弦算法 拉丁超立方 混合变异 多阈值 图像熵 火灾图像
下载PDF
改进?鱼优化算法和熵测度的图像多阈值分割 被引量:1
15
作者 刘庆鑫 李霓 +1 位作者 贾鹤鸣 齐琦 《智能系统学报》 CSCD 北大核心 2024年第2期381-391,共11页
针对传统图像多阈值分割方法存在效率低、分割质量差等问题,提出一种改进?鱼优化算法并结合熵测度(weight lens remora optimization algorithm,WLROA)的图像多阈值分割方法。针对?鱼优化算法易陷入局部极值等缺陷,引入透镜成像反向学... 针对传统图像多阈值分割方法存在效率低、分割质量差等问题,提出一种改进?鱼优化算法并结合熵测度(weight lens remora optimization algorithm,WLROA)的图像多阈值分割方法。针对?鱼优化算法易陷入局部极值等缺陷,引入透镜成像反向学习策略,生成透镜反向解来增加种群多样性,进而提高算法跳出局部极值能力;提出一种自适应权重因子,对个体位置进行自适应扰动,提高算法探索能力。以最小化交叉熵作为优化目标,利用WLROA确定最小交叉熵并获得相应分割阈值。选取部分伯克利大学分割数据集图像和遥感图像测试提出算法的分割性能,测试结果表明,WLROA与其他知名算法相比具有更好的分割效果,能够有效实现复杂图像的精确处理。 展开更多
关键词 图像处理 多阈值分割 ?鱼优化算法 最小交叉熵 透镜成像反向学习 自适应权重因子 全局优化 遥感图像
下载PDF
增强型金枪鱼群优化指数熵的砂粒显微图像分割
16
作者 王梦菲 王卫星 +1 位作者 徐琨 李理敏 《光学精密工程》 EI CAS CSCD 北大核心 2024年第8期1199-1211,共13页
砂粒显微图像分割可以辅助地质评估,但因其种类繁多,特征复杂,为分割的准确度带来了挑战。针对该类图像提出一种增强型金枪鱼群优化指数熵的分割方法(ETSO-EXP),可以有效保留各类砂粒的纹理特征。首先,针对金枪鱼群优化算法(TSO)在全局... 砂粒显微图像分割可以辅助地质评估,但因其种类繁多,特征复杂,为分割的准确度带来了挑战。针对该类图像提出一种增强型金枪鱼群优化指数熵的分割方法(ETSO-EXP),可以有效保留各类砂粒的纹理特征。首先,针对金枪鱼群优化算法(TSO)在全局搜索与局部开发上的若干不足,提出了混沌扰动策略、动态权重策略和余弦干扰策略对其增强,基准函数实验表明ETSO大幅提高了收敛精度,小幅提高了收敛速度。其次,将ETSO用于确定EXP的分割阈值,以分割图像的信息量为标准验证了该方案的可行性。最后,在雅鲁藏布江砂粒显微图像数据集上进行分割实验,与TSO-EXP相比,ETSO-EXP分割的图像在峰值信噪比、结构相似性、特征相似度和寻优速度的评估上分别达到了18.78%,6.85%,4.16%和3.83%的提升,在同类分割方法中性能最优。结果表明,分割方法ETSO-EXP对于对比度较高、纹理丰富或砂粒碎屑尺寸差异较大的图像都具有较高的分割精度和计算速度。 展开更多
关键词 砂粒显微图像 图像分割 指数熵 金枪鱼群优化
下载PDF
多策略融合改进北方苍鹰算法的森林冠层图像分割
17
作者 仝柯 朱良宽 +1 位作者 王璟瑀 付雪 《森林工程》 北大核心 2024年第5期124-133,共10页
针对森林冠层图像复杂,分割精度较差等问题,提出一种多策略融合改进北方苍鹰优化算法(Improved Northern Goshawk Optimization,INGO)的冠层图像分割方法。首先,在北方苍鹰初始化引入随机反向学习策略,以增加种群多样性,提高搜索效率;... 针对森林冠层图像复杂,分割精度较差等问题,提出一种多策略融合改进北方苍鹰优化算法(Improved Northern Goshawk Optimization,INGO)的冠层图像分割方法。首先,在北方苍鹰初始化引入随机反向学习策略,以增加种群多样性,提高搜索效率;在北方苍鹰探索阶段,添加自适应权重因子提高算法搜索能力,加快算法收敛速度;在北方苍鹰开发阶段,添加非线性收敛因子平衡全局搜索和局部开发能力。其次,采用多阈值Kapur熵作为适应度函数,通过选取8个基准函数对改进的算法进行测试,测试结果表明,改进的算法可以有效提高精度和搜索速度。最后,将所改进的算法对森林冠层图像进行阈值分割试验,并在适应度值、森林图像分割时的峰值信噪比(PSNR)、结构相似性(SSIM)与特征相似度(FSIM)上进行对比分析。试验结果表明,改进的算法可以获得更精确的森林冠层分割阈值和更高的分割精度。 展开更多
关键词 北方苍鹰优化算法 多策略融合 非线性收敛因子 Kapur熵 图像分割 森林冠层
下载PDF
基于改进蜉蝣算法优化多阈值图像分割
18
作者 贺航 许连杰 +2 位作者 李高源 吕容飞 王喜良 《科学技术与工程》 北大核心 2024年第12期5059-5068,共10页
针对图像多阈值分割中存在分割效率低、计算时间长以及精度不高等问题,提出了一种基于改进蜉蝣算法的多阈值图像分割算法。首先,在初始化阶段引入类随机采样方法中的Sobol序列,增强种群的遍历性和多样性;其次,提出一种自适应非线性惯性... 针对图像多阈值分割中存在分割效率低、计算时间长以及精度不高等问题,提出了一种基于改进蜉蝣算法的多阈值图像分割算法。首先,在初始化阶段引入类随机采样方法中的Sobol序列,增强种群的遍历性和多样性;其次,提出一种自适应非线性惯性权重,平衡了全局与局部寻优能力,提高了算法的收敛效率,利于种群向最优解逼近;最后,采用指数熵作为计算适应度的目标函数,通过改进蜉蝣算法对图像分割的多阈值组合进行寻优,确定最优分割阈值。为了验证该改进算法的有效性,选择了伯克利图像来进行分割验证,并与其他智能算法进行比较。实验结果表明:该改进算法在分割准确性、计算时间、结构衡量指标(structure similarity index measure,SSIM)和峰值信噪比(peak signal-to-noise ratio,PSNR)上均优于对比算法,能快速有效地解决复杂多目标图像的多阈值分割问题,具有较强的工程实用性。 展开更多
关键词 多阈值图像分割 蜉蝣算法 Sobol序列 惯性权重 指数熵 智能优化算法
下载PDF
伪对立学习与差分进化的改进鲸鱼优化算法及图像分割应用
19
作者 孙超 《计算机应用与软件》 北大核心 2024年第9期265-272,287,共9页
针对多阈值图像分割计算代价高、分割精度差的不足,提出伪对立学习与差分进化的改进鲸鱼优化最大熵多阈值图像分割算法。为了提升传统鲸鱼算法的寻优精度和收敛速率,引入伪对立学习和混沌Tent映射进行种群初始化,提升种群多样性和初始... 针对多阈值图像分割计算代价高、分割精度差的不足,提出伪对立学习与差分进化的改进鲸鱼优化最大熵多阈值图像分割算法。为了提升传统鲸鱼算法的寻优精度和收敛速率,引入伪对立学习和混沌Tent映射进行种群初始化,提升种群多样性和初始解质量,扩大精英个体对种群进化的引领作用;引入差分进化增强种群全局搜索能力,避免迭代后期陷入局部最优,进而实现改进算法OLDWOA。以最大熵函数评估适应度,利用OLDWOA对图像分割多阈值组合寻优,确定最优阈值。利用经典图像做图像分割实验,在计算效率、峰值信噪比、结构相似度和特征相似度指标上对比,证实该方法分割精度和分割效率优于同类算法。 展开更多
关键词 图像分割 鲸鱼优化算法 最大熵 差分进化 伪对立学习
下载PDF
双馈风机变换器开路故障不完全检修策略研究
20
作者 潘亮亮 《自动化仪表》 CAS 2024年第11期53-57,共5页
为了解决故障检修过程中容易出现开路故障再次发生的问题,提出一种基于改进最大熵算法的双馈风机变换器开路故障不完全检修策略。利用红外热成像仪采集双馈风机变换器状态红外热图像,并经过滤波和增强处理提高图像细节的识别度。创新性... 为了解决故障检修过程中容易出现开路故障再次发生的问题,提出一种基于改进最大熵算法的双馈风机变换器开路故障不完全检修策略。利用红外热成像仪采集双馈风机变换器状态红外热图像,并经过滤波和增强处理提高图像细节的识别度。创新性地通过改进最大熵算法确定最佳分割阈值,对图像的目标和背景进行分割,选取目标部分进行故障检修。采用卷积神经网络提取图像特征并降维。利用分类器估算每个故障类别的可能性,实现双馈风机变换器开路故障不完全检修。研究结果表明:所提策略可以准确地对双馈风机变换器开路故障进行检修,得到的检修准确率、精确度、召回率和F1值分别为0.8、1.0、1.0和0.86。与现有策略相比,所提策略具有较高的检修准确性和可靠性,可以解决故障检修过程中开路故障再次发生的问题。 展开更多
关键词 双馈风机变换器 改进最大熵算法 红外热图像 图像分割 开路故障 卷积神经网络 高斯模糊处理 傅立叶变换
下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部