The Bayes estimator of the parameter is obtained for the scale exponential family in the case of identically distributed and positively associated(PA) samples under weighted square loss function.We construct the emp...The Bayes estimator of the parameter is obtained for the scale exponential family in the case of identically distributed and positively associated(PA) samples under weighted square loss function.We construct the empirical Bayes(EB) estimator and prove it is asymptotic optimal.展开更多
It is necessary to test for varying dispersion in generalized nonlinear models.Wei,et al(1998) developed a likelihood ratio test,a score test and their adjustments to test for varying dispersion in continuous exponent...It is necessary to test for varying dispersion in generalized nonlinear models.Wei,et al(1998) developed a likelihood ratio test,a score test and their adjustments to test for varying dispersion in continuous exponential family nonlinear models.This type of problem in the framework of general discrete exponential family nonlinear models is discussed.Two types of varying dispersion,which are random coefficients model and random effects model,are proposed,and corresponding score test statistics are constructed and expressed in simple,easy to use,matrix formulas.展开更多
This paper studies a maximum likelihood estimator(MLE) of the parameter for a continuous one-parameter exponential family under ranked set sampling(RSS). The authors first find the optimal RSS according to the charact...This paper studies a maximum likelihood estimator(MLE) of the parameter for a continuous one-parameter exponential family under ranked set sampling(RSS). The authors first find the optimal RSS according to the character of the family, viz, arrange the RSS based on quasi complete and sufficient statistic of independent and identically distributed(iid) samples. Then under this RSS, some sufficient conditions for the existence and uniqueness of the MLE, which are easily used in practice,are obtained. Using these conditions, the existence and uniqueness of the MLEs of the parameters for some usual distributions in this family are proved. Numerical simulations for these distributions fully support the result from the above two step optimizations of the sampling and the estimation method.展开更多
In this paper, we studied a family of the exponential attractors and the inertial manifolds for a class of generalized Kirchhoff-type equations with strong dissipation term. After making appropriate assumptions for Ki...In this paper, we studied a family of the exponential attractors and the inertial manifolds for a class of generalized Kirchhoff-type equations with strong dissipation term. After making appropriate assumptions for Kirchhoff stress term and nonlinear term, the existence of exponential attractor is obtained by proving the discrete squeezing property of the equation, then according to Hadamard’s graph transformation method, the spectral interval condition is proved to be true, therefore, the existence of a family of the inertial manifolds for the equation is obtained.展开更多
In this paper, we study the long-time behavior of a class of generalized nonlinear Kichhoff equation under the condition of n dimension. Firstly, the Lipschitz property and squeezing property of the nonlinear semigrou...In this paper, we study the long-time behavior of a class of generalized nonlinear Kichhoff equation under the condition of n dimension. Firstly, the Lipschitz property and squeezing property of the nonlinear semigroup related to the initial-boundary value problem are proved, and then the existence of its exponential attractor is obtained. By extending the space <em>E</em><sub>0</sub> to <em>E<sub>k</sub></em>, a family of the exponential attractors of the initial-boundary value problem is obtained. In the second part, we consider the long-time behavior for a system of generalized Kirchhoff type with strong damping terms. Using the Hadamard graph transformation method, we obtain the existence of a family of the inertial manifolds while such equations satisfy the spectrum interval condition.展开更多
In this paper, the global dynamics of a class of higher order nonlinear Kirchhoff equations under n-dimensional conditions is studied. Firstly, the Lipschitz property and squeezing property of the nonlinear semigroup ...In this paper, the global dynamics of a class of higher order nonlinear Kirchhoff equations under n-dimensional conditions is studied. Firstly, the Lipschitz property and squeezing property of the nonlinear semigroup associated with the initial boundary value problem are proved, and the existence of a family of exponential attractors is obtained. Then, by constructing the corresponding graph norm, the condition of a spectral interval is established when N is sufficiently large. Finally, the existence of the family of inertial manifolds is obtained.展开更多
To prove the existence of the family of exponential attractors, we first define a family of compact, invariant absorbing sets <em>B<sub>k</sub></em>. Then we prove that the solution semigroup h...To prove the existence of the family of exponential attractors, we first define a family of compact, invariant absorbing sets <em>B<sub>k</sub></em>. Then we prove that the solution semigroup has Lipschitz property and discrete squeezing property. Finally, we obtain a family of exponential attractors and its estimation of dimension by combining them with previous theories. Next, we obtain Kirchhoff-type random equation by adding product white noise to the right-hand side of the equation. To study the existence of random attractors, firstly we transform the equation by using Ornstein-Uhlenbeck process. Then we obtain a family of bounded random absorbing sets via estimating the solution of the random differential equation. Finally, we prove the asymptotic compactness of semigroup of the stochastic dynamic system;thereby we obtain a family of random attractors.展开更多
In this paper, exponential type regression models are considered from geometric point of view. The stochastic expansions relating to the estimate are derived and are used to study several asymptotic inference problems...In this paper, exponential type regression models are considered from geometric point of view. The stochastic expansions relating to the estimate are derived and are used to study several asymptotic inference problems. The biases and the covariances relating to the estimate may be calculated based on the expansions. The information loss of the estimate and a limit theorem connected with the observed and expected Fisher informations are obtained in terms of the curvatures.展开更多
基金Supported by the Anhui University of Technology and Science Foundation for the Recruiting Talent(2009YQ005) Acknowledgements The authors thank the referee for his/her careful reading of the manuscript and many useful suggestions.
文摘The Bayes estimator of the parameter is obtained for the scale exponential family in the case of identically distributed and positively associated(PA) samples under weighted square loss function.We construct the empirical Bayes(EB) estimator and prove it is asymptotic optimal.
基金Supported by the National Natural Science Foundations of China( 1 9631 0 4 0 ) and SSFC( o2 BTJ0 0 1 ) .
文摘It is necessary to test for varying dispersion in generalized nonlinear models.Wei,et al(1998) developed a likelihood ratio test,a score test and their adjustments to test for varying dispersion in continuous exponential family nonlinear models.This type of problem in the framework of general discrete exponential family nonlinear models is discussed.Two types of varying dispersion,which are random coefficients model and random effects model,are proposed,and corresponding score test statistics are constructed and expressed in simple,easy to use,matrix formulas.
基金supported by the National Science Foundation of China under Grant Nos.11571133 and11461027the Fundamental Research Funds for the Central Universities under Grant No.20205001515
文摘This paper studies a maximum likelihood estimator(MLE) of the parameter for a continuous one-parameter exponential family under ranked set sampling(RSS). The authors first find the optimal RSS according to the character of the family, viz, arrange the RSS based on quasi complete and sufficient statistic of independent and identically distributed(iid) samples. Then under this RSS, some sufficient conditions for the existence and uniqueness of the MLE, which are easily used in practice,are obtained. Using these conditions, the existence and uniqueness of the MLEs of the parameters for some usual distributions in this family are proved. Numerical simulations for these distributions fully support the result from the above two step optimizations of the sampling and the estimation method.
文摘In this paper, we studied a family of the exponential attractors and the inertial manifolds for a class of generalized Kirchhoff-type equations with strong dissipation term. After making appropriate assumptions for Kirchhoff stress term and nonlinear term, the existence of exponential attractor is obtained by proving the discrete squeezing property of the equation, then according to Hadamard’s graph transformation method, the spectral interval condition is proved to be true, therefore, the existence of a family of the inertial manifolds for the equation is obtained.
文摘In this paper, we study the long-time behavior of a class of generalized nonlinear Kichhoff equation under the condition of n dimension. Firstly, the Lipschitz property and squeezing property of the nonlinear semigroup related to the initial-boundary value problem are proved, and then the existence of its exponential attractor is obtained. By extending the space <em>E</em><sub>0</sub> to <em>E<sub>k</sub></em>, a family of the exponential attractors of the initial-boundary value problem is obtained. In the second part, we consider the long-time behavior for a system of generalized Kirchhoff type with strong damping terms. Using the Hadamard graph transformation method, we obtain the existence of a family of the inertial manifolds while such equations satisfy the spectrum interval condition.
文摘In this paper, the global dynamics of a class of higher order nonlinear Kirchhoff equations under n-dimensional conditions is studied. Firstly, the Lipschitz property and squeezing property of the nonlinear semigroup associated with the initial boundary value problem are proved, and the existence of a family of exponential attractors is obtained. Then, by constructing the corresponding graph norm, the condition of a spectral interval is established when N is sufficiently large. Finally, the existence of the family of inertial manifolds is obtained.
文摘To prove the existence of the family of exponential attractors, we first define a family of compact, invariant absorbing sets <em>B<sub>k</sub></em>. Then we prove that the solution semigroup has Lipschitz property and discrete squeezing property. Finally, we obtain a family of exponential attractors and its estimation of dimension by combining them with previous theories. Next, we obtain Kirchhoff-type random equation by adding product white noise to the right-hand side of the equation. To study the existence of random attractors, firstly we transform the equation by using Ornstein-Uhlenbeck process. Then we obtain a family of bounded random absorbing sets via estimating the solution of the random differential equation. Finally, we prove the asymptotic compactness of semigroup of the stochastic dynamic system;thereby we obtain a family of random attractors.
基金The project was supported by National Natural Science Foundation of China
文摘In this paper, exponential type regression models are considered from geometric point of view. The stochastic expansions relating to the estimate are derived and are used to study several asymptotic inference problems. The biases and the covariances relating to the estimate may be calculated based on the expansions. The information loss of the estimate and a limit theorem connected with the observed and expected Fisher informations are obtained in terms of the curvatures.