Hollow cylinders are widely used in spacecraft, rockets, weapons, metallurgy, materials, and mechanical manufacturing industries, and so on, hydraulic bulging roll cylinder and hydraulic press work all belong to hollo...Hollow cylinders are widely used in spacecraft, rockets, weapons, metallurgy, materials, and mechanical manufacturing industries, and so on, hydraulic bulging roll cylinder and hydraulic press work all belong to hollow cylinders. However, up till now, the solution of the cylinder subjected to the pressures in the three-dimensional space is still at the stage of the analytical solution to the normal pressure or the approximate solution to the variable pressure by numerical method. The analytical solution to the variable pressure of the cylinder has not yet made any breakthrough in theory and can not meet accurate theoretical analysis and calculation requirements of the cylindrical in Engineering. In view of their importance, the precision calculation and theoretical analysis are required to investigate on engineering. A stress function which meets both the biharmonic equations and boundary conditions is constructed in the three-dimensional space. Furthermore, the analytic solution of a hollow cylinder subjected to exponential function distributed variable pressure on its inner and outer surfaces is deduced. By controlling the pressure subject to exponential function distributed variable pressure in the hydraulic bulging roller without any rolling load, using a static tester to record the strain supported hydraulic bulging roll, and comparing with the theoretical calculation, the experimental test result has a higher degree of agreement with the theoretical calculation. Simultaneously, the famous Lam6 solution can be deduced when given the unlimited length of cylinder along the axis. The analytic solution paves the way for the mathematic building and solution of hollow cylinder with randomly uneven pressure.展开更多
Rational Bezier surface is a widely used surface fitting tool in CAD. When all the weights of a rational B@zier surface go to infinity in the form of power function, the limit of surface is the regular control surface...Rational Bezier surface is a widely used surface fitting tool in CAD. When all the weights of a rational B@zier surface go to infinity in the form of power function, the limit of surface is the regular control surface induced by some lifting function, which is called toric degenerations of rational Bezier surfaces. In this paper, we study on the degenerations of the rational Bezier surface with weights in the exponential function and indicate the difference of our result and the work of Garcia-Puente et al. Through the transformation of weights in the form of exponential function and power function, the regular control surface of rational Bezier surface with weights in the exponential function is defined, which is just the limit of the surface. Compared with the power function, the exponential function approaches infinity faster, which leads to surface with the weights in the form of exponential function degenerates faster.展开更多
Multiplicative calculus(MUC)measures the rate of change of function in terms of ratios,which makes the exponential functions significantly linear in the framework of MUC.Therefore,a generally non-linear optimization p...Multiplicative calculus(MUC)measures the rate of change of function in terms of ratios,which makes the exponential functions significantly linear in the framework of MUC.Therefore,a generally non-linear optimization problem containing exponential functions becomes a linear problem in MUC.Taking this as motivation,this paper lays mathematical foundation of well-known classical Gauss-Newton minimization(CGNM)algorithm in the framework of MUC.This paper formulates the mathematical derivation of proposed method named as multiplicative Gauss-Newton minimization(MGNM)method along with its convergence properties.The proposed method is generalized for n number of variables,and all its theoretical concepts are authenticated by simulation results.Two case studies have been conducted incorporating multiplicatively-linear and non-linear exponential functions.From simulation results,it has been observed that proposed MGNM method converges for 12972 points,out of 19600 points considered while optimizing multiplicatively-linear exponential function,whereas CGNM and multiplicative Newton minimization methods converge for only 2111 and 9922 points,respectively.Furthermore,for a given set of initial value,the proposed MGNM converges only after 2 iterations as compared to 5 iterations taken by other methods.A similar pattern is observed for multiplicatively-non-linear exponential function.Therefore,it can be said that proposed method converges faster and for large range of initial values as compared to conventional methods.展开更多
By constructing Liapunov functions and building a new inequality, we obtain two kinds of sufficient conditions for the existence and global exponential stability of almost periodic solution for a Hopfield-type neural ...By constructing Liapunov functions and building a new inequality, we obtain two kinds of sufficient conditions for the existence and global exponential stability of almost periodic solution for a Hopfield-type neural networks subject to almost periodic external stimuli. Irt this paper, we assume that the network parameters vary almost periodically with time and we incorporate variable delays in the processing part of the network architectures.展开更多
This paper concerns optimal investment problem with proportional transaction costs and finite time horizon based on exponential utility function. Using a partial differential equation approach, we reveal that the prob...This paper concerns optimal investment problem with proportional transaction costs and finite time horizon based on exponential utility function. Using a partial differential equation approach, we reveal that the problem is equivalent to a parabolic double obstacle problem involving two free boundaries that correspond to the optimal buying and selling policies. Numerical examples are obtained by the binomial method.展开更多
This paper addresses the design of an exponential function-based learning law for artificial neural networks(ANNs)with continuous dynamics.The ANN structure is used to obtain a non-parametric model of systems with unc...This paper addresses the design of an exponential function-based learning law for artificial neural networks(ANNs)with continuous dynamics.The ANN structure is used to obtain a non-parametric model of systems with uncertainties,which are described by a set of nonlinear ordinary differential equations.Two novel adaptive algorithms with predefined exponential convergence rate adjust the weights of the ANN.The first algorithm includes an adaptive gain depending on the identification error which accelerated the convergence of the weights and promotes a faster convergence between the states of the uncertain system and the trajectories of the neural identifier.The second approach uses a time-dependent sigmoidal gain that forces the convergence of the identification error to an invariant set characterized by an ellipsoid.The generalized volume of this ellipsoid depends on the upper bounds of uncertainties,perturbations and modeling errors.The application of the invariant ellipsoid method yields to obtain an algorithm to reduce the volume of the convergence region for the identification error.Both adaptive algorithms are derived from the application of a non-standard exponential dependent function and an associated controlled Lyapunov function.Numerical examples demonstrate the improvements enforced by the algorithms introduced in this study by comparing the convergence settings concerning classical schemes with non-exponential continuous learning methods.The proposed identifiers overcome the results of the classical identifier achieving a faster convergence to an invariant set of smaller dimensions.展开更多
This study presents an order exponential model for estimating road traffic safety in city clusters.The proposed model introduces the traffic flow intrinsic properties and uses the characteristics and regular patterns ...This study presents an order exponential model for estimating road traffic safety in city clusters.The proposed model introduces the traffic flow intrinsic properties and uses the characteristics and regular patterns of traffic development to identify road traffic safety levels in city clusters.Additionally,an evaluation index system of city cluster road traffic safety was constructed based on the spatial and temporal distribution.Then Order Exponential Evaluation Model(OEEM),a comprehensive model using order exponent function for road traffic safety evaluation,was put forward,which considers the main characteristics and the generation process of traffic accidents.The model effectively controlled the unsafe behavior of the traffic system.It could define the levels of city cluster road traffic safety and dynamically detect road safety risk.The proposed model was verified with statistical data from three Chinese city clusters by comparing the common model for road traffic safety with an ideal model.The results indicate that the order exponent approach undertaken in this study can be extended and applied to other research topics and fields.展开更多
The purpose of this paper is to present the class of atomic basis functions(ABFs)which are of exponential type and are denoted by EFupn(x,ω).While ABFs of the algebraic type are already represented in the numerical m...The purpose of this paper is to present the class of atomic basis functions(ABFs)which are of exponential type and are denoted by EFupn(x,ω).While ABFs of the algebraic type are already represented in the numerical modeling of various problems inmathematical physics and computationalmechanics,ABFs of the exponential type have not yet been sufficiently researched.These functions,unlike the ABFs of the algebraic type Fupn(x),contain the tension parameterω,which gives them additional approximation properties.Exponential monomials up to the nth degree can be described exactly by the linear combination of the functions EFupn(x,ω).The function EFupn for n=0 is called the“mother”ABF of the exponential type,i.e.,EFup0(x,ω)≡Eup(x,ω).In other words,the functions EFupn(x,ω)are elements of the linear vector space EUPn and retain all the properties of their“mother”function Eup(x,ω).Thus,this paper,in terms of its content and purpose,can be understood as a sequel of the article by Brajcic Kurbasa et al.,which shows the basic properties and application of the basis function Eup(x,ω).This paper presents,in an analogous way,the development and application of the exponential basis functions EFupn(x,ω).Here,for the first time,expressions for calculating the values of the functions EFupn(x,ω)and their derivatives are given in a form suitable for application in numerical analyses,which is shown in the verification examples of the approximations of known functions.展开更多
This paper presents exponential Atomic Basis Functions(ABF),which are called Eup(x;w).These functions are infinitely differentiable finite functions that unlike algebraic up(x)basis functions,have an unspecified param...This paper presents exponential Atomic Basis Functions(ABF),which are called Eup(x;w).These functions are infinitely differentiable finite functions that unlike algebraic up(x)basis functions,have an unspecified parameter-frequency w.Numerical experiments show that this class of atomic functions has good approximation properties,especially in the case of large gradients(Gibbs phenomenon).In this work,for the first time,the properties of exponential ABF are thoroughly investigated and the expression for calculating the value of the basis function at an arbitrary point of the domain is given in a form suitable for implementation in numerical analysis.Application of these basis functions is shown in the function approximation example.The procedure for determining the best frequencies,which gives the smallest approximation error in terms of the least squares method,is presented.展开更多
This letter investigates an improved blind source separation algorithm based on Maximum Entropy (ME) criteria. The original ME algorithm chooses the fixed exponential or sigmoid ftmction as the nonlinear mapping fun...This letter investigates an improved blind source separation algorithm based on Maximum Entropy (ME) criteria. The original ME algorithm chooses the fixed exponential or sigmoid ftmction as the nonlinear mapping function which can not match the original signal very well. A parameter estimation method is employed in this letter to approach the probability of density function of any signal with parameter-steered generalized exponential function. An improved learning rule and a natural gradient update formula of unmixing matrix are also presented. The algorithm of this letter can separate the mixture of super-Gaussian signals and also the mixture of sub-Gaussian signals. The simulation experiment demonstrates the efficiency of the algorithm.展开更多
In China,numerous cities are expanding into sloping land,yet the quantitative distribution patterns of urban built-up land density along the slope gradient remain unclear,limiting the understanding of sloping land urb...In China,numerous cities are expanding into sloping land,yet the quantitative distribution patterns of urban built-up land density along the slope gradient remain unclear,limiting the understanding of sloping land urbanization.In this paper,a simple negative exponential function was presented to verify its applicability in 19 typical sloping urban areas in China.The function fits well for all case urban areas(R^(2)≥0.951,p<0.001).The parameters of this function clearly describe two fundamental attributes:initial value a and decline rate b.Between 2000 and 2020,a tends to increase,while b tends to decrease in all urban areas,confirming the hypothesis of mutual promotion between flatland densification and sloping land expansion.Multiple regression analysis indicates that the built-up land density and the ruggedness of background land can explain 70.7%of a,while the average slope ratio of built-up land to background land,the built-up land density and the built-up land area can explain 82.1%of b.This work provides a quantitative investigative tool for distribution of urban built-up land density along slope gradient,aiding in the study of the globally increasing phenomenon of sloping land urbanization from a new perspective.展开更多
This contribution is dedicated to the celebration of Rémi Abgrall’s accomplishments in Applied Mathematics and Scientific Computing during the conference“Essentially Hyperbolic Problems:Unconventional Numerics,...This contribution is dedicated to the celebration of Rémi Abgrall’s accomplishments in Applied Mathematics and Scientific Computing during the conference“Essentially Hyperbolic Problems:Unconventional Numerics,and Applications”.With respect to classical Finite Elements Methods,Trefftz methods are unconventional methods because of the way the basis functions are generated.Trefftz discontinuous Galerkin(TDG)methods have recently shown potential for numerical approximation of transport equations[6,26]with vectorial exponential modes.This paper focuses on a proof of the approximation properties of these exponential solutions.We show that vectorial exponential functions can achieve high order convergence.The fundamental part of the proof consists in proving that a certain rectangular matrix has maximal rank.展开更多
In this paper, a new spline adaptive filter using a convex combination of exponential hyperbolic sinusoidal is presented. the algorithm convexly combines an exponential hyperbolic sinusoidal Hammerstein spline adaptiv...In this paper, a new spline adaptive filter using a convex combination of exponential hyperbolic sinusoidal is presented. the algorithm convexly combines an exponential hyperbolic sinusoidal Hammerstein spline adaptive filter and a Wiener-type spline adaptive filter to maintain the robustness in non-Gaussian noise environments when dealing with both the Hammerstein nonlinear system and the Wiener nonlinear system. The convergence analyses and simulation experiments are carried out on the proposed algorithm. The experimental results show the superiority of the proposed algorithm to other algorithms.展开更多
During high-intensity,fully mechanized mining of extra-thick coal seam,the top coal would cave to a certain 3D form.Based on the data collected during drilling,a 3D model of top coal caving surface space was establish...During high-intensity,fully mechanized mining of extra-thick coal seam,the top coal would cave to a certain 3D form.Based on the data collected during drilling,a 3D model of top coal caving surface space was established to determine the relationship between the location of the stope roof and the caving surface,enabling the mathematical computation of the top caving angle(φ).The drilling method was employed to measure the top caving angle on two extra-thick fully mechanized coal caving faces under the conditions of three geological structures,namely,no geological structure,igneous rock structure,and fault structure.The results show that the value of top caving angle could be accurately estimated on-site with the 9-parameter 3D top coal caving surface model built with the drilling method.This method is a novel on-site measurement that can be easily applied.Our findings reveal that the characteristics of the coal-rock in the two mining faces are different;yet their caving angles follow the ruleφ_(igneous rock structure)<φ_(no geological structure)<φ_(fault structure).Finally,through the data fitting with two indexes(the top coal uniaxial compressive strength and the top caving angle),it is found that the relationship between the two indexes satisfies an exponential decay function.展开更多
Giao Thuy and Hai Hau coasts are located in Nam Dinh province, Vietnam, with a total coastline of 54.42 km in length. The sea-dike system has been seriously damaged and there have been many dike breaches which caused ...Giao Thuy and Hai Hau coasts are located in Nam Dinh province, Vietnam, with a total coastline of 54.42 km in length. The sea-dike system has been seriously damaged and there have been many dike breaches which caused floods and losses. This situation is considered of a general representative for coastal area in the northern part of Vietnam. A variety of studies have shown that the gradient in the longshore sediment transport rate and the offshore fine sediment lost are the main mechanisms causing the beach erosion. This study presents a field investigation of the beach profiles at Giao Thuy and Hai Hau beaches. Three types of empirical functions for the equilibrium beach profile are applied and compared with the observations. Results show that all observed beach profiles can be described by a single function. However, one specific equilibrium profile equation is not sufficient to assess all beach profiles. In Section 1 of Giao Thuy and Section 3 of Hai Thinh beaches, beach profiles are consistent with the logarithmic function, while the exponential function fits well in Section 2. This difference is explained with respect to coastal morphology, sediment characteristics and hydrodynamic conditions which vary in site. An analysis of the validity of the beach profile functions is recommended for the numerical modeling and engineering designs in this area.展开更多
The precise integration method proposed for linear time-invariant homogeneous dynamic systems can provide accurate numerical results that approach an exact solution at integration points. However, difficulties arise w...The precise integration method proposed for linear time-invariant homogeneous dynamic systems can provide accurate numerical results that approach an exact solution at integration points. However, difficulties arise when the algorithm is used for non-homogeneous dynamic systems due to the inverse matrix calculation required. In this paper, the structural dynamic equalibrium equations are converted into a special form, the inverse matrix calculation is replaced by the Crout decomposition method to solve the dynamic equilibrium equations, and the precise integration method without the inverse matrix calculation is obtained. The new algorithm enhances the present precise integration method by improving both the computational accuracy and efficiency. Two numerical examples are given to demonstrate the validity and efficiency of the proposed algorithm.展开更多
An optimal quota-share and excess-of-loss reinsurance and investment problem is studied for an insurer who is allowed to invest in a risk-free asset and a risky asset.Especially the price process of the risky asset is...An optimal quota-share and excess-of-loss reinsurance and investment problem is studied for an insurer who is allowed to invest in a risk-free asset and a risky asset.Especially the price process of the risky asset is governed by Heston's stochastic volatility(SV)model.With the objective of maximizing the expected index utility of the terminal wealth of the insurance company,by using the classical tools of stochastic optimal control,the explicit expressions for optimal strategies and optimal value functions are derived.An interesting conclusion is found that it is better to buy one reinsurance than two under the assumption of this paper.Moreover,some numerical simulations and sensitivity analysis are provided.展开更多
Complete synchronization could be reached between some chaotic and/or hyperchaotic systems under linear coupling. More generally, the conditional Lyapunov exponents are often calculated to confirm the stability of syn...Complete synchronization could be reached between some chaotic and/or hyperchaotic systems under linear coupling. More generally, the conditional Lyapunov exponents are often calculated to confirm the stability of synchronization and reliability of linear controllers. In this paper, detailed proof and measurement of the reliability of linear controllers are given by constructing a Lyapunov function in the exponential form. It is confirmed that two hyperchaotic systems can reach complete synchronization when two linear controllers are imposed on the driven system unidirectionally and the unknown parameters in the driving systems are estimated completely. Finally, it gives the general guidance to reach complete synchronization under linear coupling for other chaotic and hyperchaotic systems with unknown parameters.展开更多
In this paper we study the integral curve in a random vector field perturbed by white noise. It is related to a stochastic transport-diffusion equation. Under some conditions on the covariance function of the vector f...In this paper we study the integral curve in a random vector field perturbed by white noise. It is related to a stochastic transport-diffusion equation. Under some conditions on the covariance function of the vector field, the solution of this stochastic partial differential equation is proved to have moments. The exact p-th moment is represented through integrals with respect to Brownian motions. The basic tool is Girsanov formula.展开更多
Instead of the usual Hirota ansatz,i.e.,the functions in bilinear equations being chosen as exponentialtypes,a generalized Hirota ansatz is proposed for a (3+1)-dimensional nonlinear evolution equation.Based on theres...Instead of the usual Hirota ansatz,i.e.,the functions in bilinear equations being chosen as exponentialtypes,a generalized Hirota ansatz is proposed for a (3+1)-dimensional nonlinear evolution equation.Based on theresulting generalized Hirota ansatz,a family of new explicit solutions for the equation are derived.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 50875230)
文摘Hollow cylinders are widely used in spacecraft, rockets, weapons, metallurgy, materials, and mechanical manufacturing industries, and so on, hydraulic bulging roll cylinder and hydraulic press work all belong to hollow cylinders. However, up till now, the solution of the cylinder subjected to the pressures in the three-dimensional space is still at the stage of the analytical solution to the normal pressure or the approximate solution to the variable pressure by numerical method. The analytical solution to the variable pressure of the cylinder has not yet made any breakthrough in theory and can not meet accurate theoretical analysis and calculation requirements of the cylindrical in Engineering. In view of their importance, the precision calculation and theoretical analysis are required to investigate on engineering. A stress function which meets both the biharmonic equations and boundary conditions is constructed in the three-dimensional space. Furthermore, the analytic solution of a hollow cylinder subjected to exponential function distributed variable pressure on its inner and outer surfaces is deduced. By controlling the pressure subject to exponential function distributed variable pressure in the hydraulic bulging roller without any rolling load, using a static tester to record the strain supported hydraulic bulging roll, and comparing with the theoretical calculation, the experimental test result has a higher degree of agreement with the theoretical calculation. Simultaneously, the famous Lam6 solution can be deduced when given the unlimited length of cylinder along the axis. The analytic solution paves the way for the mathematic building and solution of hollow cylinder with randomly uneven pressure.
基金Supported by the National Natural Science Foundation of China(11671068,11271060,11601064,11290143)Fundamental Research of Civil Aircraft(MJ-F-2012-04)the Fundamental Research Funds for the Central Universities(DUT16LK38)
文摘Rational Bezier surface is a widely used surface fitting tool in CAD. When all the weights of a rational B@zier surface go to infinity in the form of power function, the limit of surface is the regular control surface induced by some lifting function, which is called toric degenerations of rational Bezier surfaces. In this paper, we study on the degenerations of the rational Bezier surface with weights in the exponential function and indicate the difference of our result and the work of Garcia-Puente et al. Through the transformation of weights in the form of exponential function and power function, the regular control surface of rational Bezier surface with weights in the exponential function is defined, which is just the limit of the surface. Compared with the power function, the exponential function approaches infinity faster, which leads to surface with the weights in the form of exponential function degenerates faster.
文摘Multiplicative calculus(MUC)measures the rate of change of function in terms of ratios,which makes the exponential functions significantly linear in the framework of MUC.Therefore,a generally non-linear optimization problem containing exponential functions becomes a linear problem in MUC.Taking this as motivation,this paper lays mathematical foundation of well-known classical Gauss-Newton minimization(CGNM)algorithm in the framework of MUC.This paper formulates the mathematical derivation of proposed method named as multiplicative Gauss-Newton minimization(MGNM)method along with its convergence properties.The proposed method is generalized for n number of variables,and all its theoretical concepts are authenticated by simulation results.Two case studies have been conducted incorporating multiplicatively-linear and non-linear exponential functions.From simulation results,it has been observed that proposed MGNM method converges for 12972 points,out of 19600 points considered while optimizing multiplicatively-linear exponential function,whereas CGNM and multiplicative Newton minimization methods converge for only 2111 and 9922 points,respectively.Furthermore,for a given set of initial value,the proposed MGNM converges only after 2 iterations as compared to 5 iterations taken by other methods.A similar pattern is observed for multiplicatively-non-linear exponential function.Therefore,it can be said that proposed method converges faster and for large range of initial values as compared to conventional methods.
基金The Soft Project (B30145) of Science and Technology of Hunan Province.
文摘By constructing Liapunov functions and building a new inequality, we obtain two kinds of sufficient conditions for the existence and global exponential stability of almost periodic solution for a Hopfield-type neural networks subject to almost periodic external stimuli. Irt this paper, we assume that the network parameters vary almost periodically with time and we incorporate variable delays in the processing part of the network architectures.
基金Supported by the Key Grant Project of Chinese Ministry of Education (NO.309018)National Natural Science Foundation of China (NO.70973104,NO.11171304)Zhejiang Provincial Natural Science Foundation of China (NO.Y6110023)
文摘This paper concerns optimal investment problem with proportional transaction costs and finite time horizon based on exponential utility function. Using a partial differential equation approach, we reveal that the problem is equivalent to a parabolic double obstacle problem involving two free boundaries that correspond to the optimal buying and selling policies. Numerical examples are obtained by the binomial method.
基金supported by the National Polytechnic Institute(SIP-20221151,SIP-20220916)。
文摘This paper addresses the design of an exponential function-based learning law for artificial neural networks(ANNs)with continuous dynamics.The ANN structure is used to obtain a non-parametric model of systems with uncertainties,which are described by a set of nonlinear ordinary differential equations.Two novel adaptive algorithms with predefined exponential convergence rate adjust the weights of the ANN.The first algorithm includes an adaptive gain depending on the identification error which accelerated the convergence of the weights and promotes a faster convergence between the states of the uncertain system and the trajectories of the neural identifier.The second approach uses a time-dependent sigmoidal gain that forces the convergence of the identification error to an invariant set characterized by an ellipsoid.The generalized volume of this ellipsoid depends on the upper bounds of uncertainties,perturbations and modeling errors.The application of the invariant ellipsoid method yields to obtain an algorithm to reduce the volume of the convergence region for the identification error.Both adaptive algorithms are derived from the application of a non-standard exponential dependent function and an associated controlled Lyapunov function.Numerical examples demonstrate the improvements enforced by the algorithms introduced in this study by comparing the convergence settings concerning classical schemes with non-exponential continuous learning methods.The proposed identifiers overcome the results of the classical identifier achieving a faster convergence to an invariant set of smaller dimensions.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51178157)the High-level Project of the Top Six Talents in Jiangsu Province(Grant No.JXQC-021)+1 种基金the Key Science and Technology Program in Henan Province(Grant No.182102310004)the Humanities and Social Science Research Programs Foundation of Ministry of Education of China(Grant No.18YJAZH028).
文摘This study presents an order exponential model for estimating road traffic safety in city clusters.The proposed model introduces the traffic flow intrinsic properties and uses the characteristics and regular patterns of traffic development to identify road traffic safety levels in city clusters.Additionally,an evaluation index system of city cluster road traffic safety was constructed based on the spatial and temporal distribution.Then Order Exponential Evaluation Model(OEEM),a comprehensive model using order exponent function for road traffic safety evaluation,was put forward,which considers the main characteristics and the generation process of traffic accidents.The model effectively controlled the unsafe behavior of the traffic system.It could define the levels of city cluster road traffic safety and dynamically detect road safety risk.The proposed model was verified with statistical data from three Chinese city clusters by comparing the common model for road traffic safety with an ideal model.The results indicate that the order exponent approach undertaken in this study can be extended and applied to other research topics and fields.
基金supported through Project KK.01.1.1.02.0027a project co-financed by the Croatian Government and the European Union through the European Regional Development Fund-the Competitiveness and Cohesion Operational Programme.
文摘The purpose of this paper is to present the class of atomic basis functions(ABFs)which are of exponential type and are denoted by EFupn(x,ω).While ABFs of the algebraic type are already represented in the numerical modeling of various problems inmathematical physics and computationalmechanics,ABFs of the exponential type have not yet been sufficiently researched.These functions,unlike the ABFs of the algebraic type Fupn(x),contain the tension parameterω,which gives them additional approximation properties.Exponential monomials up to the nth degree can be described exactly by the linear combination of the functions EFupn(x,ω).The function EFupn for n=0 is called the“mother”ABF of the exponential type,i.e.,EFup0(x,ω)≡Eup(x,ω).In other words,the functions EFupn(x,ω)are elements of the linear vector space EUPn and retain all the properties of their“mother”function Eup(x,ω).Thus,this paper,in terms of its content and purpose,can be understood as a sequel of the article by Brajcic Kurbasa et al.,which shows the basic properties and application of the basis function Eup(x,ω).This paper presents,in an analogous way,the development and application of the exponential basis functions EFupn(x,ω).Here,for the first time,expressions for calculating the values of the functions EFupn(x,ω)and their derivatives are given in a form suitable for application in numerical analyses,which is shown in the verification examples of the approximations of known functions.
文摘This paper presents exponential Atomic Basis Functions(ABF),which are called Eup(x;w).These functions are infinitely differentiable finite functions that unlike algebraic up(x)basis functions,have an unspecified parameter-frequency w.Numerical experiments show that this class of atomic functions has good approximation properties,especially in the case of large gradients(Gibbs phenomenon).In this work,for the first time,the properties of exponential ABF are thoroughly investigated and the expression for calculating the value of the basis function at an arbitrary point of the domain is given in a form suitable for implementation in numerical analysis.Application of these basis functions is shown in the function approximation example.The procedure for determining the best frequencies,which gives the smallest approximation error in terms of the least squares method,is presented.
文摘This letter investigates an improved blind source separation algorithm based on Maximum Entropy (ME) criteria. The original ME algorithm chooses the fixed exponential or sigmoid ftmction as the nonlinear mapping function which can not match the original signal very well. A parameter estimation method is employed in this letter to approach the probability of density function of any signal with parameter-steered generalized exponential function. An improved learning rule and a natural gradient update formula of unmixing matrix are also presented. The algorithm of this letter can separate the mixture of super-Gaussian signals and also the mixture of sub-Gaussian signals. The simulation experiment demonstrates the efficiency of the algorithm.
基金supported by the project of the National Natural Science Foundation of China entitled“Distribution and change characteristics of construction land on slope gradient in mountainous cities of southern China”(No.41961039).
文摘In China,numerous cities are expanding into sloping land,yet the quantitative distribution patterns of urban built-up land density along the slope gradient remain unclear,limiting the understanding of sloping land urbanization.In this paper,a simple negative exponential function was presented to verify its applicability in 19 typical sloping urban areas in China.The function fits well for all case urban areas(R^(2)≥0.951,p<0.001).The parameters of this function clearly describe two fundamental attributes:initial value a and decline rate b.Between 2000 and 2020,a tends to increase,while b tends to decrease in all urban areas,confirming the hypothesis of mutual promotion between flatland densification and sloping land expansion.Multiple regression analysis indicates that the built-up land density and the ruggedness of background land can explain 70.7%of a,while the average slope ratio of built-up land to background land,the built-up land density and the built-up land area can explain 82.1%of b.This work provides a quantitative investigative tool for distribution of urban built-up land density along slope gradient,aiding in the study of the globally increasing phenomenon of sloping land urbanization from a new perspective.
文摘This contribution is dedicated to the celebration of Rémi Abgrall’s accomplishments in Applied Mathematics and Scientific Computing during the conference“Essentially Hyperbolic Problems:Unconventional Numerics,and Applications”.With respect to classical Finite Elements Methods,Trefftz methods are unconventional methods because of the way the basis functions are generated.Trefftz discontinuous Galerkin(TDG)methods have recently shown potential for numerical approximation of transport equations[6,26]with vectorial exponential modes.This paper focuses on a proof of the approximation properties of these exponential solutions.We show that vectorial exponential functions can achieve high order convergence.The fundamental part of the proof consists in proving that a certain rectangular matrix has maximal rank.
基金supported by the National Natural Science Foundation of China (Grant No. 62371242, Grant No. 61871230)。
文摘In this paper, a new spline adaptive filter using a convex combination of exponential hyperbolic sinusoidal is presented. the algorithm convexly combines an exponential hyperbolic sinusoidal Hammerstein spline adaptive filter and a Wiener-type spline adaptive filter to maintain the robustness in non-Gaussian noise environments when dealing with both the Hammerstein nonlinear system and the Wiener nonlinear system. The convergence analyses and simulation experiments are carried out on the proposed algorithm. The experimental results show the superiority of the proposed algorithm to other algorithms.
基金This work was supported by the Science and Technology Innovation Project of Higher Education in Shanxi Province(No.2019L0754)Central Guiding Local Science and Technology Development Fund project(No.YDZJSX2021B021)the Datong Science and Technology Plan Project(No.2019122).
文摘During high-intensity,fully mechanized mining of extra-thick coal seam,the top coal would cave to a certain 3D form.Based on the data collected during drilling,a 3D model of top coal caving surface space was established to determine the relationship between the location of the stope roof and the caving surface,enabling the mathematical computation of the top caving angle(φ).The drilling method was employed to measure the top caving angle on two extra-thick fully mechanized coal caving faces under the conditions of three geological structures,namely,no geological structure,igneous rock structure,and fault structure.The results show that the value of top caving angle could be accurately estimated on-site with the 9-parameter 3D top coal caving surface model built with the drilling method.This method is a novel on-site measurement that can be easily applied.Our findings reveal that the characteristics of the coal-rock in the two mining faces are different;yet their caving angles follow the ruleφ_(igneous rock structure)<φ_(no geological structure)<φ_(fault structure).Finally,through the data fitting with two indexes(the top coal uniaxial compressive strength and the top caving angle),it is found that the relationship between the two indexes satisfies an exponential decay function.
基金supported by Vietnam International Education Development Ministry of Education and Training(Grant No.322)the Fundamental Research Funds for the Central Universities(Grant No.2012B06514)the Special Research Fund of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering(Grant No.2009585812)
文摘Giao Thuy and Hai Hau coasts are located in Nam Dinh province, Vietnam, with a total coastline of 54.42 km in length. The sea-dike system has been seriously damaged and there have been many dike breaches which caused floods and losses. This situation is considered of a general representative for coastal area in the northern part of Vietnam. A variety of studies have shown that the gradient in the longshore sediment transport rate and the offshore fine sediment lost are the main mechanisms causing the beach erosion. This study presents a field investigation of the beach profiles at Giao Thuy and Hai Hau beaches. Three types of empirical functions for the equilibrium beach profile are applied and compared with the observations. Results show that all observed beach profiles can be described by a single function. However, one specific equilibrium profile equation is not sufficient to assess all beach profiles. In Section 1 of Giao Thuy and Section 3 of Hai Thinh beaches, beach profiles are consistent with the logarithmic function, while the exponential function fits well in Section 2. This difference is explained with respect to coastal morphology, sediment characteristics and hydrodynamic conditions which vary in site. An analysis of the validity of the beach profile functions is recommended for the numerical modeling and engineering designs in this area.
文摘The precise integration method proposed for linear time-invariant homogeneous dynamic systems can provide accurate numerical results that approach an exact solution at integration points. However, difficulties arise when the algorithm is used for non-homogeneous dynamic systems due to the inverse matrix calculation required. In this paper, the structural dynamic equalibrium equations are converted into a special form, the inverse matrix calculation is replaced by the Crout decomposition method to solve the dynamic equilibrium equations, and the precise integration method without the inverse matrix calculation is obtained. The new algorithm enhances the present precise integration method by improving both the computational accuracy and efficiency. Two numerical examples are given to demonstrate the validity and efficiency of the proposed algorithm.
基金National Natural Science Foundation of China(No.62073071)Fundamental Research Funds for the Central Universities and Graduate Student Innovation Fund of Donghua University,China(No.CUSF-DH-D-2021045)。
文摘An optimal quota-share and excess-of-loss reinsurance and investment problem is studied for an insurer who is allowed to invest in a risk-free asset and a risky asset.Especially the price process of the risky asset is governed by Heston's stochastic volatility(SV)model.With the objective of maximizing the expected index utility of the terminal wealth of the insurance company,by using the classical tools of stochastic optimal control,the explicit expressions for optimal strategies and optimal value functions are derived.An interesting conclusion is found that it is better to buy one reinsurance than two under the assumption of this paper.Moreover,some numerical simulations and sensitivity analysis are provided.
基金Project supported partially by the National Natural Science Foundation of China(Grant No.11265008)
文摘Complete synchronization could be reached between some chaotic and/or hyperchaotic systems under linear coupling. More generally, the conditional Lyapunov exponents are often calculated to confirm the stability of synchronization and reliability of linear controllers. In this paper, detailed proof and measurement of the reliability of linear controllers are given by constructing a Lyapunov function in the exponential form. It is confirmed that two hyperchaotic systems can reach complete synchronization when two linear controllers are imposed on the driven system unidirectionally and the unknown parameters in the driving systems are estimated completely. Finally, it gives the general guidance to reach complete synchronization under linear coupling for other chaotic and hyperchaotic systems with unknown parameters.
文摘In this paper we study the integral curve in a random vector field perturbed by white noise. It is related to a stochastic transport-diffusion equation. Under some conditions on the covariance function of the vector field, the solution of this stochastic partial differential equation is proved to have moments. The exact p-th moment is represented through integrals with respect to Brownian motions. The basic tool is Girsanov formula.
文摘Instead of the usual Hirota ansatz,i.e.,the functions in bilinear equations being chosen as exponentialtypes,a generalized Hirota ansatz is proposed for a (3+1)-dimensional nonlinear evolution equation.Based on theresulting generalized Hirota ansatz,a family of new explicit solutions for the equation are derived.