To predict soil water variation in the crop root zone, a general exponential recession (GER) model was developed to depict the recession process of soil water storage. Incorporating the GER model into the mass balan...To predict soil water variation in the crop root zone, a general exponential recession (GER) model was developed to depict the recession process of soil water storage. Incorporating the GER model into the mass balance model for soil water, a GER-based physicoempirical (PE-GER) model was proposed for simulating soil water variation in the crop root zone. The PE-GER model was calibrated and validated with experimental data of winter wheat in North China. Simulation results agreed well with the field experiment results, as well as were consistent with the simulation results from a more thoroughly developed soil water balance model which required more detailed parameters and inputs. Compared with a previously developed simple exponential recession (SER) based physicoempirical (PF^SER) model, PE-GER was more suitable f0r application in a broad range of soil texture, from light soil to heavy soil. Practical application of PE-GER showed that PE-GER could provide a convenient way to simulate and predict the variation of soil water storage in the crop root zone, especially in case of insufficient data for conceptual or hydrodynamic models.展开更多
基金Supported by the National Natural Science Foundation of China (Nos. 50879041 and 50939004)the Program for New Century Excellent Talents in University of the Ministry of Education of China (Nos. 06-0059 and 07-0814)
文摘To predict soil water variation in the crop root zone, a general exponential recession (GER) model was developed to depict the recession process of soil water storage. Incorporating the GER model into the mass balance model for soil water, a GER-based physicoempirical (PE-GER) model was proposed for simulating soil water variation in the crop root zone. The PE-GER model was calibrated and validated with experimental data of winter wheat in North China. Simulation results agreed well with the field experiment results, as well as were consistent with the simulation results from a more thoroughly developed soil water balance model which required more detailed parameters and inputs. Compared with a previously developed simple exponential recession (SER) based physicoempirical (PF^SER) model, PE-GER was more suitable f0r application in a broad range of soil texture, from light soil to heavy soil. Practical application of PE-GER showed that PE-GER could provide a convenient way to simulate and predict the variation of soil water storage in the crop root zone, especially in case of insufficient data for conceptual or hydrodynamic models.