期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
2020—2025年广东省医疗机构床位需求预测 被引量:5
1
作者 何易洲 陈昭悦 +3 位作者 夏英华 曹蓉 何群 张永慧 《中国卫生资源》 北大核心 2021年第2期203-207,共5页
目的预测2020—2025年广东省医疗机构的床位需求总量。方法基于卫生服务需求法与Holt双参数指数平滑模型,结合年龄别人口数据预测床位需求。结果2025年,广东省住院人数为2425.11万人,床位需求数为70.04万张,每千常住人口床位需求数为5.6... 目的预测2020—2025年广东省医疗机构的床位需求总量。方法基于卫生服务需求法与Holt双参数指数平滑模型,结合年龄别人口数据预测床位需求。结果2025年,广东省住院人数为2425.11万人,床位需求数为70.04万张,每千常住人口床位需求数为5.63张、每千常住人口拥有床位数5.55张,供需比例为98.58%。预测模型的平均百分误差为1.63%(标准差=±1.90%,均方根误差=20.63)。结论结合人口的年龄结构进行预测结果更稳定、误差更小。2020年,广东省的床位配置量基本能满足床位需求,供需较为平衡。但2024年床位需求将超过床位配置总量。未来,广东省应加大床位资源的投入力度,提高基层卫生机构的床位利用率,全面落实分级诊疗制度。 展开更多
关键词 医疗机构medical institution 床位配置bed allocation 需求预测demand prediction 卫生服务需求法health service demand method Holt指数平滑法Holt exponential smoothing method 广东省Guangdong Province
下载PDF
Predicting LTE Throughput Using Traffic Time Series 被引量:1
2
作者 Xin Dong Wentao Fan Jun Gu 《ZTE Communications》 2015年第4期61-64,共4页
Throughput prediction is essential for congestion control and LTE network management. In this paper, the autoregressive integrated moving average (ARIMA) model and exponential smoothing model are used to predict the... Throughput prediction is essential for congestion control and LTE network management. In this paper, the autoregressive integrated moving average (ARIMA) model and exponential smoothing model are used to predict the throughput in a single cell and whole region in an LTE network. The experimental results show that these two models perform differently in both scenarios. The ARIMA model is better than the exponential smoothing model for predicting throughput on weekdays in a whole region. The exponential smoothing model is better than the ARIMA model for predicting throughput on weekends in a whole region. The exponential smoothing model is better than the ARIMA model for predicting throughput in a single cell. In these two LTE network scenarios, throughput prediction based on traffic time series leads to more efficient resource management and better QoS. 展开更多
关键词 ARIMA: exponential smoothing method throughput prediction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部