This paper proves that, under the local Lipschitz condition, the stochastic functional differential equations with infinite delay have global solutions without the linear growth condition. Furthermore, the pth moment ...This paper proves that, under the local Lipschitz condition, the stochastic functional differential equations with infinite delay have global solutions without the linear growth condition. Furthermore, the pth moment exponential stability conditions are given. Finally, one example is presented to illustrate our theory.展开更多
Some sufficient conditions for the global exponential stability and lower bounds on the rate of exponential convergence of the cellular neural networks with delay (DCNNs) are obtained by means of a method based on del...Some sufficient conditions for the global exponential stability and lower bounds on the rate of exponential convergence of the cellular neural networks with delay (DCNNs) are obtained by means of a method based on delay differential inequality. The method, which does not make use of any Lyapunov functional, is simple and valid for the stability analysis of neural networks with delay. Some previously established results in this paper are shown to be special casses of the presented result.展开更多
This paper discusses a linear neutral stochastic differential equation with variable delays. By using fixed point theory, the necessary and sufficient conditions are given to ensure that the trivial solution to such a...This paper discusses a linear neutral stochastic differential equation with variable delays. By using fixed point theory, the necessary and sufficient conditions are given to ensure that the trivial solution to such an equation is pth moment asymptotically stable. These conditions do not require the boundedness of delays, nor derivation of delays. An example was also given for illustration.展开更多
The aim of this paper is to the discussion of the exponential stability of a class of impulsive neutral stochastic functional differential equations with Markovian switching.Under the influence of impulsive disturbanc...The aim of this paper is to the discussion of the exponential stability of a class of impulsive neutral stochastic functional differential equations with Markovian switching.Under the influence of impulsive disturbance,the solution for the system is discontinuous.By using the Razumikhin technique and stochastic analysis approaches,as well as combining the idea of mathematical induction and classification discussion,some sufficient conditions for the pth moment exponential stability and almost exponential stability of the systems are obtained.The stability conclusion is full time-delay.The results show that impulse,the point distance of impulse and Markovain switching affect the stability for the system.Finally,two examples are provided to illustrate the effectiveness of the results proposed.展开更多
In this paper,by constructing proper Lyapunov functions,exponential stability criteria for stochastic delay partial differential equations are obtained. An example is shown to illustrate the results.
In this paper, we investigate the dynamics and the global exponential stability of a new class of Hopfield neural network with time-varying and distributed delays. In fact, the properties of norms and the contraction ...In this paper, we investigate the dynamics and the global exponential stability of a new class of Hopfield neural network with time-varying and distributed delays. In fact, the properties of norms and the contraction principle are adjusted to ensure the existence as well as the uniqueness of the pseudo almost periodic solution, which is also its derivative pseudo almost periodic. This results are without resorting to the theory of exponential dichotomy. Furthermore, by employing the suitable Lyapunov function, some delayindependent sufficient conditions are derived for exponential convergence. The main originality lies in the fact that spaces considered in this paper generalize the notion of periodicity and almost periodicity. Lastly, two examples are given to demonstrate the validity of the proposed theoretical results.展开更多
In this paper, the exponential stability of fuzzy differential equations with delay is investigated. By employing the formula for the variation of parameters, inequality technique and the norm and measure of matrix, a...In this paper, the exponential stability of fuzzy differential equations with delay is investigated. By employing the formula for the variation of parameters, inequality technique and the norm and measure of matrix, an algebraic criterion for the exponential stability is obtained.展开更多
In this paper, we consider strong convergence and almost sure exponential stability of the backward Euler-Maruyama method for nonlinear hybrid stochastic differential equations with time-variable delay. Under the loca...In this paper, we consider strong convergence and almost sure exponential stability of the backward Euler-Maruyama method for nonlinear hybrid stochastic differential equations with time-variable delay. Under the local Lipschitz condition and polynomial growth condition, it is proved that the backward Euler-Maruyama method is strongly convergent. Additionally, the moment estimates and almost sure exponential stability for the analytical solution are proved. Also, under the appropriate condition, we show that the numerical solutions for the backward Euler-Maruyama methods are almost surely exponentially stable. A numerical experiment is given to illustrate the computational effectiveness and the theoretical results of the method.展开更多
This paper is concerned with the stability of neural networks with time-varying delays. Under assumption that the nonlinear stimulate functions are Lipschitz continuous, by means of generalized Halanay inequalities, D...This paper is concerned with the stability of neural networks with time-varying delays. Under assumption that the nonlinear stimulate functions are Lipschitz continuous, by means of generalized Halanay inequalities, Dini's derivative and functional analysis techniques, several globally exponential stability criteria are established, which are only dependent on the parameters of the system.展开更多
In this paper, a class of cellular neural networks (CNNs) with multi-proportional delays is studied. The nonlinear transformation yi(t) = xi(et) transforms a class of CNNs with multi-proportional delays into a c...In this paper, a class of cellular neural networks (CNNs) with multi-proportional delays is studied. The nonlinear transformation yi(t) = xi(et) transforms a class of CNNs with multi-proportional delays into a class of CNNs with multi-constant delays and time- varying coefficients. By applying Brouwer fixed point theorem and constructing the delay differential inequality, several delay-independent and delay-dependent sufficient conditions are derived for ensuring the existence, uniqueness and global exponential stability of equilibrium of the system and the exponentially convergent rate is estimated. And several examples and their simulations are given to illustrate the effectiveness of obtained results.展开更多
In this paper, the asymptotic stability for singular differential nonlinear systems with multiple time-varying delays is considered. The V-functional method for general singular differential delay system is investigat...In this paper, the asymptotic stability for singular differential nonlinear systems with multiple time-varying delays is considered. The V-functional method for general singular differential delay system is investigated. The asymptotic stability criteria for singular differential nonlinear systems with multiple time-varying delays are derived based on V-functional method and some analytical techniques, which are described as matrix equations or matrix inequalities. The results obtained are computationally flexible and efficient.展开更多
文摘This paper proves that, under the local Lipschitz condition, the stochastic functional differential equations with infinite delay have global solutions without the linear growth condition. Furthermore, the pth moment exponential stability conditions are given. Finally, one example is presented to illustrate our theory.
文摘Some sufficient conditions for the global exponential stability and lower bounds on the rate of exponential convergence of the cellular neural networks with delay (DCNNs) are obtained by means of a method based on delay differential inequality. The method, which does not make use of any Lyapunov functional, is simple and valid for the stability analysis of neural networks with delay. Some previously established results in this paper are shown to be special casses of the presented result.
基金The National Natural Science Foundation of China (No.10671078)
文摘This paper discusses a linear neutral stochastic differential equation with variable delays. By using fixed point theory, the necessary and sufficient conditions are given to ensure that the trivial solution to such an equation is pth moment asymptotically stable. These conditions do not require the boundedness of delays, nor derivation of delays. An example was also given for illustration.
基金This research was supported by the National Nature Science Foundation of China under Grant No.11571245Young Crop Project of Sichuan University under Grant No.2020SCUNL111.
文摘The aim of this paper is to the discussion of the exponential stability of a class of impulsive neutral stochastic functional differential equations with Markovian switching.Under the influence of impulsive disturbance,the solution for the system is discontinuous.By using the Razumikhin technique and stochastic analysis approaches,as well as combining the idea of mathematical induction and classification discussion,some sufficient conditions for the pth moment exponential stability and almost exponential stability of the systems are obtained.The stability conclusion is full time-delay.The results show that impulse,the point distance of impulse and Markovain switching affect the stability for the system.Finally,two examples are provided to illustrate the effectiveness of the results proposed.
文摘In this paper,by constructing proper Lyapunov functions,exponential stability criteria for stochastic delay partial differential equations are obtained. An example is shown to illustrate the results.
文摘In this paper, we investigate the dynamics and the global exponential stability of a new class of Hopfield neural network with time-varying and distributed delays. In fact, the properties of norms and the contraction principle are adjusted to ensure the existence as well as the uniqueness of the pseudo almost periodic solution, which is also its derivative pseudo almost periodic. This results are without resorting to the theory of exponential dichotomy. Furthermore, by employing the suitable Lyapunov function, some delayindependent sufficient conditions are derived for exponential convergence. The main originality lies in the fact that spaces considered in this paper generalize the notion of periodicity and almost periodicity. Lastly, two examples are given to demonstrate the validity of the proposed theoretical results.
基金the National Natural Science Foundation of China under Grant 10671133Doctor's Foundation of Chongqing University of Posts and Telecommunications under Grant A2007-41
文摘In this paper, the exponential stability of fuzzy differential equations with delay is investigated. By employing the formula for the variation of parameters, inequality technique and the norm and measure of matrix, an algebraic criterion for the exponential stability is obtained.
基金supported by National Natural Science Foundation of China (Grant No. 11571128)
文摘In this paper, we consider strong convergence and almost sure exponential stability of the backward Euler-Maruyama method for nonlinear hybrid stochastic differential equations with time-variable delay. Under the local Lipschitz condition and polynomial growth condition, it is proved that the backward Euler-Maruyama method is strongly convergent. Additionally, the moment estimates and almost sure exponential stability for the analytical solution are proved. Also, under the appropriate condition, we show that the numerical solutions for the backward Euler-Maruyama methods are almost surely exponentially stable. A numerical experiment is given to illustrate the computational effectiveness and the theoretical results of the method.
基金Supported by Science and Technology Plan Project of Guangzhou(2006J1-C0341)
文摘This paper is concerned with the stability of neural networks with time-varying delays. Under assumption that the nonlinear stimulate functions are Lipschitz continuous, by means of generalized Halanay inequalities, Dini's derivative and functional analysis techniques, several globally exponential stability criteria are established, which are only dependent on the parameters of the system.
文摘In this paper, a class of cellular neural networks (CNNs) with multi-proportional delays is studied. The nonlinear transformation yi(t) = xi(et) transforms a class of CNNs with multi-proportional delays into a class of CNNs with multi-constant delays and time- varying coefficients. By applying Brouwer fixed point theorem and constructing the delay differential inequality, several delay-independent and delay-dependent sufficient conditions are derived for ensuring the existence, uniqueness and global exponential stability of equilibrium of the system and the exponentially convergent rate is estimated. And several examples and their simulations are given to illustrate the effectiveness of obtained results.
基金Supported by the National Natural Science Foundation of China (Grant No.10771001)the Special Research Fund for the Doctoral Program of Higher Education of China (Grant No.20093401110001)+3 种基金the Natural Science Key Foundation of Education Department of Anhui Province (Grant No.KJ2010ZD02)the Natural Science Foundation of Education Department of Anhui Province (Grant Nos.KJ2008B152 KJ2009B098)the Foundation of Innovation Team of Anhui University
文摘In this paper, the asymptotic stability for singular differential nonlinear systems with multiple time-varying delays is considered. The V-functional method for general singular differential delay system is investigated. The asymptotic stability criteria for singular differential nonlinear systems with multiple time-varying delays are derived based on V-functional method and some analytical techniques, which are described as matrix equations or matrix inequalities. The results obtained are computationally flexible and efficient.