The exponential stabilization problem for finite dimensional switched systems is extended to the infinite dimensional distributed parameter systems in the Hilbert space. Based on the semigroup theory, by applying the ...The exponential stabilization problem for finite dimensional switched systems is extended to the infinite dimensional distributed parameter systems in the Hilbert space. Based on the semigroup theory, by applying the multiple Lyapunov function method, the exponential stabilization conditions are derived. These conditions are given in the form of linear operator inequalities where the decision variables are operators in the Hilbert space; while the stabilization properties depend on the switching rule. Being applied to the two-dimensional heat switched propagation equations with the Dirichlet boundary conditions, these linear operator inequalities are transformed into standard linear matrix inequalities. Finally, two examples are given to illustrate the effectiveness of the proposed results.展开更多
This paper deals with the problem of switching between an open-loop estimator and a close-loop estimator for compensating transmission error and packet dropout of networked control systems. Switching impulse is consid...This paper deals with the problem of switching between an open-loop estimator and a close-loop estimator for compensating transmission error and packet dropout of networked control systems. Switching impulse is considered in order to reduce the error between theory and application, a sufficient condition for exponential stabilization of networked control systems under a given switching rule is presented by multiple Lyapunov-like functions. These results are presented for both continuous-time and discrete-time domains. Controllers are designed by means of linear matrix inequalities. Sim- ulation results show the feasibility and efficiency of the proposed method.展开更多
In this paper we consider the initial Neumann boundary value problem for a degenerate Keller-Segel model which features a signal-dependent non-increasing motility function.The main obstacle of analysis comes from the ...In this paper we consider the initial Neumann boundary value problem for a degenerate Keller-Segel model which features a signal-dependent non-increasing motility function.The main obstacle of analysis comes from the possible degeneracy when the signal concentration becomes unbounded.In the current work,we are interested in the boundedness and exponential stability of the classical solution in higher dimensions.With the aid of a Lyapunov functional and a delicate Alikakos-Moser type iteration,we are able to establish a time-independent upper bound of the concentration provided that the motility function decreases algebraically.Then we further prove the uniform-in-time boundedness of the solution by constructing an estimation involving a weighted energy.Finally,thanks to the Lyapunov functional again,we prove the exponential stabilization toward the spatially homogeneous steady states.Our boundedness result improves those in[1]and the exponential stabilization is obtained for the first time.展开更多
New robust exponential stabilization criteria for interval time-varying delay systems with norm-bounded uncertainties are proposed. Based on the free-weighting matrices and new Lyapunov-Krasovskii functionals, such cr...New robust exponential stabilization criteria for interval time-varying delay systems with norm-bounded uncertainties are proposed. Based on the free-weighting matrices and new Lyapunov-Krasovskii functionals, such criteria are obtained by dealing with system model directly and designing memoryless state feedback controllers and expressed in terms of linear matrix inequalities (LMIs). Moreover, the criteria are applicable to the case whether the derivative of the time-varying delay is bounded or not. The state decay rate is estimated by the corresponding LMIs. Numerical examples are given to illustrate the effectiveness of the proposed method.展开更多
It is proved that a system under compact perturbation cannot be uniformly exponentially stable for an isometric C0-semigroup or a C0-group with polynomial growth for negative time in a Banach space. The results extend...It is proved that a system under compact perturbation cannot be uniformly exponentially stable for an isometric C0-semigroup or a C0-group with polynomial growth for negative time in a Banach space. The results extend and improve the corresponding results of previous literature.展开更多
In this paper, we are concerned with output feedback stabilization for a one-dimensional anti-stable wave equation with disturbance. First, we design a disturbance estimator for the original system. Then, we propose a...In this paper, we are concerned with output feedback stabilization for a one-dimensional anti-stable wave equation with disturbance. First, we design a disturbance estimator for the original system. Then, we propose an output feedback controller for the original system. By calculation, the closed-loop of original system is proved to be exponentially stable and well-posed. Finally, this paper is summarized.展开更多
The stabilization of the Timoshenko equation of a nonuniform beam with locally distributed feedbacks is considered.It is proved that the system is exponentially stabilizable.The frequency domain method and the multipl...The stabilization of the Timoshenko equation of a nonuniform beam with locally distributed feedbacks is considered.It is proved that the system is exponentially stabilizable.The frequency domain method and the multiplier technique are applied.展开更多
This paper investigates the stabilization of underactuated vehicles moving in a three-dimensional vector space.The vehicle’s model is established on the matrix Lie group SE(3),which describes the configuration of rig...This paper investigates the stabilization of underactuated vehicles moving in a three-dimensional vector space.The vehicle’s model is established on the matrix Lie group SE(3),which describes the configuration of rigid bodies globally and uniquely.We focus on the kinematic model of the underactuated vehicle,which features an underactuation form that has no sway and heave velocity.To compensate for the lack of these two velocities,we construct additional rotation matrices to generate a motion of rotation coupled with translation.Then,the state feedback is designed with the help of the logarithmic map,and we prove that the proposed control law can exponentially stabilize the underactuated vehicle to the identity group element with an almost global domain of attraction.Later,the presented control strategy is extended to set-point stabilization in the sense that the underactuated vehicle can be stabilized to an arbitrary desired configuration specified in advance.Finally,simulation examples are provided to verify the effectiveness of the stabilization controller.展开更多
This paper proposes new sufficient conditions for the exponential stability and stabilization.of linear uncertain polytopic time-delay systems. The conditions for exponential stability are expressed in terms of Kharit...This paper proposes new sufficient conditions for the exponential stability and stabilization.of linear uncertain polytopic time-delay systems. The conditions for exponential stability are expressed in terms of Kharitonov-type linear matrix inequalities (LMIs) and we develop control design methods based on LMIs for solving stabilization problem. Our method consists of a combination of the LMI approach and the use of parameter-dependent Lyapunov functionals, which allows to compute simultaneously the two bounds that characterize the exponetial stability rate of the solution. Numerical examples illustrating the conditions are given.展开更多
The given unstable hybrid stochastic differential equation is stabilized in the sense of p th-moment exponential stability.We achieve the results by feedback controls based on the discrete-time state and mode observat...The given unstable hybrid stochastic differential equation is stabilized in the sense of p th-moment exponential stability.We achieve the results by feedback controls based on the discrete-time state and mode observations.The upper bound on the duration between two consecutive observations is obtained as well.Finally,a numerical example is given to verify the validity of the theoretical conclusions.展开更多
Aimed at the stabilization of the nonholonomic chained system under fixed sample control, two control laws were proposed. The discrete model of the nonholonomic chained system under zero-hold was obtained through the ...Aimed at the stabilization of the nonholonomic chained system under fixed sample control, two control laws were proposed. The discrete model of the nonholonomic chained system under zero-hold was obtained through the integrate method to the continuous model. And the discrete model was transformed to the form with two linear subsystems through coordinate transformation. Two feedback control laws, time-invariant control law and time-varying control law, were proposed; and the local stabilization and global stabilization were realized respectively. The simulation results show the effectiveness of the proposed control laws. The discrete nonholonomic chained system can converge to zero from any initial state exponentially, and the convergence rate can be changed through changing the parameters of the control laws.展开更多
The exponential stability of a class of neural networks with continuously distributed delays is investigated by employing a novel Lyapunov-Krasovskii functional. Through introducing some free-weighting matrices and th...The exponential stability of a class of neural networks with continuously distributed delays is investigated by employing a novel Lyapunov-Krasovskii functional. Through introducing some free-weighting matrices and the equivalent descriptor form, a delay-dependent stability criterion is established for the addressed systems. The condition is expressed in terms of a linear matrix inequality (LMI), and it can be checked by resorting to the LMI in the Matlab toolbox. In addition, the proposed stability criteria do not require the monotonicity of the activation functions and the derivative of a time-varying delay being less than 1, which generalize and improve earlier methods. Finally, numerical examples are given to show the effectiveness of the obtained methods.展开更多
A flexible structure consisting of a Euler-Bernoulli beam with co-located sensors and actuators is considered. The control is a shear force in proportion to velocity. It is known that uniform exponential stability can...A flexible structure consisting of a Euler-Bernoulli beam with co-located sensors and actuators is considered. The control is a shear force in proportion to velocity. It is known that uniform exponential stability can be achieved with velocity feedback. A sensitivity asymptotic analysis of the system's eigenvalues and eigenfunctions is set up. The authors prove that, for K-1 epsilon (0, + infinity), all of the generalized eigenvectors of A form a Riesz basis of H. It is also proved that the optimal exponential decay rate can be obtained from the spectrum of the system for 0 < K-1 < + infinity.展开更多
Both the global exponential stability and the existence of periodic solutions for a class of recurrent neural networks with continuously distributed delays (RNNs) are studied. By employing the inequality α∏k=1^m ...Both the global exponential stability and the existence of periodic solutions for a class of recurrent neural networks with continuously distributed delays (RNNs) are studied. By employing the inequality α∏k=1^m bk^qk≤1/r ∑qkbk^r+1/rα^r(α≥0,bk≥0,qk〉0,with ∑k=1^m qk=r-1,r≥1, constructing suitable Lyapunov r k=l k=l functions and applying the homeomorphism theory, a family of simple and new sufficient conditions are given ensuring the global exponential stability and the existence of periodic solutions of RNNs. The results extend and improve the results of earlier publications.展开更多
This paper is concerned with a third order in time linear Moore-Gibson-Thompson equation which describes the acoustic velocity potential in ultrasound wave program.Influenced by the work of Kaltenbacher,Lasiecka and M...This paper is concerned with a third order in time linear Moore-Gibson-Thompson equation which describes the acoustic velocity potential in ultrasound wave program.Influenced by the work of Kaltenbacher,Lasiecka and Marchand(Control Cybernet.2011,40:971-988),we establish an observability inequality of the conservative problem,and then discuss the equivalence between the exponential stabilization of a dissipative system and the internal observational inequality of the corresponding conservative system.展开更多
This paper investigates the absolute exponential stability of generalized neural networks with a general class of partially Lipschitz continuous and monotone increasing activation functions. The main obtained result i...This paper investigates the absolute exponential stability of generalized neural networks with a general class of partially Lipschitz continuous and monotone increasing activation functions. The main obtained result is that if the interconnection matrix T of the neural system satisfies that - T is an H matrix with nonnegative diagonal elements, then the neural system is absolutely exponentially stable(AEST). The Hopfield network, Cellular neural network and Bidirectional associative memory network are special cases of the network model considered in this paper. So this work gives some improvements to the previous ones.展开更多
The article synthesizes and presents the results regarding the stability of positive homogeneous systems that have been researched and published in recent years. Next, we provide a sufficient condition for global expo...The article synthesizes and presents the results regarding the stability of positive homogeneous systems that have been researched and published in recent years. Next, we provide a sufficient condition for global exponential stability in the case of discrete-time positive homogeneous systems with an order less than one with time-varying delays.展开更多
A class of generalized Cohen-Grossberg neural networks(CGNNs) with variable de- lays are investigated. By introducing a new type of Lyapunov functional and applying the homeomorphism theory and inequality technique,...A class of generalized Cohen-Grossberg neural networks(CGNNs) with variable de- lays are investigated. By introducing a new type of Lyapunov functional and applying the homeomorphism theory and inequality technique, some new conditions axe derived ensuring the existence and uniqueness of the equilibrium point and its global exponential stability for CGNNs. These results obtained are independent of delays, develop the existent outcome in the earlier literature and are very easily checked in practice.展开更多
By using the quasi-Lyapunov function, some sufficient conditions of global exponential stability for impulsive systems are established, which is the basis for the following discussion. Then, by employing Riccati inequ...By using the quasi-Lyapunov function, some sufficient conditions of global exponential stability for impulsive systems are established, which is the basis for the following discussion. Then, by employing Riccati inequality and Hamilton-Jacobi inequality approach, some sufficient conditions of robust exponential stability for uncertain linear/nonlinear impulsive systems are derived, respectively. Finally, some examples are given to illustrate the applications of the theory.展开更多
The problem of stabilizing a class of large-scale non-linear multiple delay systems is considered.The complicated system is decomposed into several subsystems; each function of them is expressed by a set of components...The problem of stabilizing a class of large-scale non-linear multiple delay systems is considered.The complicated system is decomposed into several subsystems; each function of them is expressed by a set of components of the overall state vector,with interconnections between them, and the subsystems are coupled by the delayed state. In this paper, a method is devised to be a suitable choice of state feedback controls of every subsystems, moreover, it is proved that the large-scale system is exponential stable.展开更多
基金The National Natural Science Foundation of China(No.61273119,61104068,61374038)the Natural Science Foundation of Jiangsu Province(No.BK2011253)
文摘The exponential stabilization problem for finite dimensional switched systems is extended to the infinite dimensional distributed parameter systems in the Hilbert space. Based on the semigroup theory, by applying the multiple Lyapunov function method, the exponential stabilization conditions are derived. These conditions are given in the form of linear operator inequalities where the decision variables are operators in the Hilbert space; while the stabilization properties depend on the switching rule. Being applied to the two-dimensional heat switched propagation equations with the Dirichlet boundary conditions, these linear operator inequalities are transformed into standard linear matrix inequalities. Finally, two examples are given to illustrate the effectiveness of the proposed results.
基金This work was supported by the National Natural Science Foundation of China (No.60574013, 60274009), and the Natural Science Fundation ofLiaoning Province (No.20032020).
文摘This paper deals with the problem of switching between an open-loop estimator and a close-loop estimator for compensating transmission error and packet dropout of networked control systems. Switching impulse is considered in order to reduce the error between theory and application, a sufficient condition for exponential stabilization of networked control systems under a given switching rule is presented by multiple Lyapunov-like functions. These results are presented for both continuous-time and discrete-time domains. Controllers are designed by means of linear matrix inequalities. Sim- ulation results show the feasibility and efficiency of the proposed method.
基金supported by Hubei Provincial Natural Science Foundation(2020CFB602).
文摘In this paper we consider the initial Neumann boundary value problem for a degenerate Keller-Segel model which features a signal-dependent non-increasing motility function.The main obstacle of analysis comes from the possible degeneracy when the signal concentration becomes unbounded.In the current work,we are interested in the boundedness and exponential stability of the classical solution in higher dimensions.With the aid of a Lyapunov functional and a delicate Alikakos-Moser type iteration,we are able to establish a time-independent upper bound of the concentration provided that the motility function decreases algebraically.Then we further prove the uniform-in-time boundedness of the solution by constructing an estimation involving a weighted energy.Finally,thanks to the Lyapunov functional again,we prove the exponential stabilization toward the spatially homogeneous steady states.Our boundedness result improves those in[1]and the exponential stabilization is obtained for the first time.
基金supported by the Science and Technology Project of Liaoning Provincial Education Department
文摘New robust exponential stabilization criteria for interval time-varying delay systems with norm-bounded uncertainties are proposed. Based on the free-weighting matrices and new Lyapunov-Krasovskii functionals, such criteria are obtained by dealing with system model directly and designing memoryless state feedback controllers and expressed in terms of linear matrix inequalities (LMIs). Moreover, the criteria are applicable to the case whether the derivative of the time-varying delay is bounded or not. The state decay rate is estimated by the corresponding LMIs. Numerical examples are given to illustrate the effectiveness of the proposed method.
基金Project of Sichuan Provincial Science and Technology Department (No.2007J13-006)
文摘It is proved that a system under compact perturbation cannot be uniformly exponentially stable for an isometric C0-semigroup or a C0-group with polynomial growth for negative time in a Banach space. The results extend and improve the corresponding results of previous literature.
文摘In this paper, we are concerned with output feedback stabilization for a one-dimensional anti-stable wave equation with disturbance. First, we design a disturbance estimator for the original system. Then, we propose an output feedback controller for the original system. By calculation, the closed-loop of original system is proved to be exponentially stable and well-posed. Finally, this paper is summarized.
基金Supported partially by the NSFC and the Science Foundation of China State Education Commission.
文摘The stabilization of the Timoshenko equation of a nonuniform beam with locally distributed feedbacks is considered.It is proved that the system is exponentially stabilizable.The frequency domain method and the multiplier technique are applied.
基金supported by the National Natural Science Foundation of China(61773024,62073002)the Eindhoven Artificial Intelligence Systems Institute(EAISI),and the ELLIIT Excellence Center and the Swedish Foundation for Strategic Research,Sweden(RIT150038)。
文摘This paper investigates the stabilization of underactuated vehicles moving in a three-dimensional vector space.The vehicle’s model is established on the matrix Lie group SE(3),which describes the configuration of rigid bodies globally and uniquely.We focus on the kinematic model of the underactuated vehicle,which features an underactuation form that has no sway and heave velocity.To compensate for the lack of these two velocities,we construct additional rotation matrices to generate a motion of rotation coupled with translation.Then,the state feedback is designed with the help of the logarithmic map,and we prove that the proposed control law can exponentially stabilize the underactuated vehicle to the identity group element with an almost global domain of attraction.Later,the presented control strategy is extended to set-point stabilization in the sense that the underactuated vehicle can be stabilized to an arbitrary desired configuration specified in advance.Finally,simulation examples are provided to verify the effectiveness of the stabilization controller.
文摘This paper proposes new sufficient conditions for the exponential stability and stabilization.of linear uncertain polytopic time-delay systems. The conditions for exponential stability are expressed in terms of Kharitonov-type linear matrix inequalities (LMIs) and we develop control design methods based on LMIs for solving stabilization problem. Our method consists of a combination of the LMI approach and the use of parameter-dependent Lyapunov functionals, which allows to compute simultaneously the two bounds that characterize the exponetial stability rate of the solution. Numerical examples illustrating the conditions are given.
文摘The given unstable hybrid stochastic differential equation is stabilized in the sense of p th-moment exponential stability.We achieve the results by feedback controls based on the discrete-time state and mode observations.The upper bound on the duration between two consecutive observations is obtained as well.Finally,a numerical example is given to verify the validity of the theoretical conclusions.
文摘Aimed at the stabilization of the nonholonomic chained system under fixed sample control, two control laws were proposed. The discrete model of the nonholonomic chained system under zero-hold was obtained through the integrate method to the continuous model. And the discrete model was transformed to the form with two linear subsystems through coordinate transformation. Two feedback control laws, time-invariant control law and time-varying control law, were proposed; and the local stabilization and global stabilization were realized respectively. The simulation results show the effectiveness of the proposed control laws. The discrete nonholonomic chained system can converge to zero from any initial state exponentially, and the convergence rate can be changed through changing the parameters of the control laws.
基金The National Natural Science Foundation of China (No60574006)
文摘The exponential stability of a class of neural networks with continuously distributed delays is investigated by employing a novel Lyapunov-Krasovskii functional. Through introducing some free-weighting matrices and the equivalent descriptor form, a delay-dependent stability criterion is established for the addressed systems. The condition is expressed in terms of a linear matrix inequality (LMI), and it can be checked by resorting to the LMI in the Matlab toolbox. In addition, the proposed stability criteria do not require the monotonicity of the activation functions and the derivative of a time-varying delay being less than 1, which generalize and improve earlier methods. Finally, numerical examples are given to show the effectiveness of the obtained methods.
文摘A flexible structure consisting of a Euler-Bernoulli beam with co-located sensors and actuators is considered. The control is a shear force in proportion to velocity. It is known that uniform exponential stability can be achieved with velocity feedback. A sensitivity asymptotic analysis of the system's eigenvalues and eigenfunctions is set up. The authors prove that, for K-1 epsilon (0, + infinity), all of the generalized eigenvectors of A form a Riesz basis of H. It is also proved that the optimal exponential decay rate can be obtained from the spectrum of the system for 0 < K-1 < + infinity.
文摘Both the global exponential stability and the existence of periodic solutions for a class of recurrent neural networks with continuously distributed delays (RNNs) are studied. By employing the inequality α∏k=1^m bk^qk≤1/r ∑qkbk^r+1/rα^r(α≥0,bk≥0,qk〉0,with ∑k=1^m qk=r-1,r≥1, constructing suitable Lyapunov r k=l k=l functions and applying the homeomorphism theory, a family of simple and new sufficient conditions are given ensuring the global exponential stability and the existence of periodic solutions of RNNs. The results extend and improve the results of earlier publications.
基金Supported by the National Natural Science Foundation of China(11771216)the Key Research and Development Program of Jiangsu Province(Social Development)(BE2019725)the Qing Lan Project of Jiangsu Province。
文摘This paper is concerned with a third order in time linear Moore-Gibson-Thompson equation which describes the acoustic velocity potential in ultrasound wave program.Influenced by the work of Kaltenbacher,Lasiecka and Marchand(Control Cybernet.2011,40:971-988),we establish an observability inequality of the conservative problem,and then discuss the equivalence between the exponential stabilization of a dissipative system and the internal observational inequality of the corresponding conservative system.
文摘This paper investigates the absolute exponential stability of generalized neural networks with a general class of partially Lipschitz continuous and monotone increasing activation functions. The main obtained result is that if the interconnection matrix T of the neural system satisfies that - T is an H matrix with nonnegative diagonal elements, then the neural system is absolutely exponentially stable(AEST). The Hopfield network, Cellular neural network and Bidirectional associative memory network are special cases of the network model considered in this paper. So this work gives some improvements to the previous ones.
文摘The article synthesizes and presents the results regarding the stability of positive homogeneous systems that have been researched and published in recent years. Next, we provide a sufficient condition for global exponential stability in the case of discrete-time positive homogeneous systems with an order less than one with time-varying delays.
基金Supported by the Distinguished Expert Science Foundation of Naval Aeronautical Engineering Institutethe Younger Foundation of Yantai University (SX06Z9)
文摘A class of generalized Cohen-Grossberg neural networks(CGNNs) with variable de- lays are investigated. By introducing a new type of Lyapunov functional and applying the homeomorphism theory and inequality technique, some new conditions axe derived ensuring the existence and uniqueness of the equilibrium point and its global exponential stability for CGNNs. These results obtained are independent of delays, develop the existent outcome in the earlier literature and are very easily checked in practice.
文摘By using the quasi-Lyapunov function, some sufficient conditions of global exponential stability for impulsive systems are established, which is the basis for the following discussion. Then, by employing Riccati inequality and Hamilton-Jacobi inequality approach, some sufficient conditions of robust exponential stability for uncertain linear/nonlinear impulsive systems are derived, respectively. Finally, some examples are given to illustrate the applications of the theory.
文摘The problem of stabilizing a class of large-scale non-linear multiple delay systems is considered.The complicated system is decomposed into several subsystems; each function of them is expressed by a set of components of the overall state vector,with interconnections between them, and the subsystems are coupled by the delayed state. In this paper, a method is devised to be a suitable choice of state feedback controls of every subsystems, moreover, it is proved that the large-scale system is exponential stable.