期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
AN EXPONENTIAL WAVE INTEGRATOR PSEUDOSPECTRAL METHOD FOR THE SYMMETRIC REGULARIZED-LONG-WAVE EQUATION 被引量:2
1
作者 Xiaofei Zhao 《Journal of Computational Mathematics》 SCIE CSCD 2016年第1期49-69,共21页
An efficient and accurate exponential wave integrator Fourier pseudospectral (EWI-FP) method is proposed and analyzed for solving the symmetric regularized-long-wave (SRLW) equation, which is used for modeling the... An efficient and accurate exponential wave integrator Fourier pseudospectral (EWI-FP) method is proposed and analyzed for solving the symmetric regularized-long-wave (SRLW) equation, which is used for modeling the weakly nonlinear ion acoustic and space-charge waves. The numerical method here is based on a Gautschi-type exponential wave integrator for temporal approximation and the Fourier pseudospectral method for spatial discretization. The scheme is fully explicit and efficient due to the fast Fourier transform. Numerical analysis of the proposed EWI-FP method is carried out and rigorous error estimates are established without CFL-type condition by means of the mathematical induction. The error bound shows that EWI-FP has second order accuracy in time and spectral accuracy in space. Numerical results are reported to confirm the theoretical studies and indicate that the error bound here is optimal. 展开更多
关键词 Symmetric regularized long-wave equation exponential wave integrator Pseudospecral method Error estimate Explicit scheme Large step size
原文传递
Error estimates of numerical methods for the nonlinear Dirac equation in the nonrelativistic limit regime 被引量:1
2
作者 BAO WeiZhu CAI YongYong +1 位作者 JIA XiaoWei YIN Jia 《Science China Mathematics》 SCIE CSCD 2016年第8期1461-1494,共34页
We present several numerical methods and establish their error estimates for the discretization of the nonlinear Dirac equation (NLDE) in the nonrelativistic limit regime, involving a small dimensionless parameter 0... We present several numerical methods and establish their error estimates for the discretization of the nonlinear Dirac equation (NLDE) in the nonrelativistic limit regime, involving a small dimensionless parameter 0 〈 ε〈〈1 which is inversely proportional to the speed of light. In this limit regime, the solution is highly oscillatory in time, i.e., there are propagating waves with wavelength O( ε^2) and O(1) in time and space, respectively. We begin with the conservative Crank-Nicolson finite difference (CNFD) method and establish rigorously its error estimate which depends explicitly on the mesh size h and time step τ- as well as the small parameter 0 〈 ε≤1 Based on the error bound, in order to obtain 'correct' numerical solutions in the nonrelativistic limit regime, i.e., 0 〈 ε≤1 , the CNFD method requests the ε-scalability: τ- = O(ε3) and h = O(√ε). Then we propose and analyze two numerical methods for the discretization of NLDE by using the Fourier spectral discretization for spatial derivatives combined with the exponential wave integrator and time- splitting technique for temporal derivatives, respectively. Rigorous error bounds for the two numerical methods show that their ε-scalability is improved to τ = O(ε2) and h = O(1) when 0 〈 ε 〈〈 1. Extensive numerical results are reported to confirm our error estimates. 展开更多
关键词 nonlinear Dirac equation nonrelativistic limit regime Crank-Nicolson finite difference method exponential wave integrator time splitting spectral method ^-scalability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部