In this paper,by an approximating argument,we obtain two disjoint and infinite sets of solutions for the following elliptic equation with critical Hardy-Sobolev exponents■whereΩis a smooth bounded domain in RN with ...In this paper,by an approximating argument,we obtain two disjoint and infinite sets of solutions for the following elliptic equation with critical Hardy-Sobolev exponents■whereΩis a smooth bounded domain in RN with 0∈?Ωand all the principle curvatures of?Ωat 0 are negative,a∈C1(Ω,R*+),μ>0,0<s<2,1<q<2 and N>2(q+1)/(q-1).By2*:=2N/(N-2)and 2*(s):(2(N-s))/(N-2)we denote the critical Sobolev exponent and Hardy-Sobolev exponent,respectively.展开更多
We establish a general mapping from one-dimensional non-Hermitian mosaic models to their non-mosaic counterparts.This mapping can give rise to mobility edges and even Lyapunov exponents in the mosaic models if critica...We establish a general mapping from one-dimensional non-Hermitian mosaic models to their non-mosaic counterparts.This mapping can give rise to mobility edges and even Lyapunov exponents in the mosaic models if critical points of localization or Lyapunov exponents of localized states in the corresponding non-mosaic models have already been analytically solved.To demonstrate the validity of this mapping,we apply it to two non-Hermitian localization models:an Aubry-Andre-like model with nonreciprocal hopping and complex quasiperiodic potentials,and the Ganeshan-Pixley-Das Sarma model with nonreciprocal hopping.We successfully obtain the mobility edges and Lyapunov exponents in their mosaic models.This general mapping may catalyze further studies on mobility edges,Lyapunov exponents,and other significant quantities pertaining to localization in non-Hermitian mosaic models.展开更多
为丰富低维离散混沌系统的动力学特性以及克服脱氧核糖核酸(deoxyribonucleic acid,DNA)编码的引入使混沌图像加密系统安全性易于降低的问题,基于Arnold映射构建具有恒定正Lyapunov指数的2维离散混沌系统,并将其与DNA编码结合,设计一个...为丰富低维离散混沌系统的动力学特性以及克服脱氧核糖核酸(deoxyribonucleic acid,DNA)编码的引入使混沌图像加密系统安全性易于降低的问题,基于Arnold映射构建具有恒定正Lyapunov指数的2维离散混沌系统,并将其与DNA编码结合,设计一个混沌图像加密方案.所设计的混沌系统模型中不含非线性项,系统具有超混沌动力学行为;加密方案中用于加密的混沌序列为明文图像像素与密钥的加取模运算结果,图像按4×4大小予以分块,扩散算法中的DNA加减、异或、同或等运算分别基于DNA编码规则1、规则4和规则7.仿真实验和性能分析结果表明:加密方案的密钥空间达到2^(266),信息熵为7.9993 bit,密钥灵敏度达到10^(−15),平均像素变化率(number of pixel change rate,NPCR)、统一平均变化强度(unified average change intensity,UACI)、块平均变化强度(block average change intensity,BACI)分别为99.6092%、33.4664%、26.7718%.展开更多
针对光伏发电功率具有较强的波动性、间歇性输出,光伏功率预测精度较低,且难于给出具体预测时间长度等问题,提出了一种长相关随机模型分数阶布朗运动(fractional Brownian motion,FBM),用于光伏功率预测。首先,采用重标极差法计算长相关...针对光伏发电功率具有较强的波动性、间歇性输出,光伏功率预测精度较低,且难于给出具体预测时间长度等问题,提出了一种长相关随机模型分数阶布朗运动(fractional Brownian motion,FBM),用于光伏功率预测。首先,采用重标极差法计算长相关(long-range dependence,LRD)参数-Hurst指数,Hurst指数用于判断光伏功率数据是否满足长相关性,并通过最大李雅普诺夫指数(Lyapunov)计算出模型最大可预测时间尺度;其次,采用随机微分法建立FBM光伏功率预测模型,同时估计FBM预测模型参数值;最后,选取澳大利亚沙漠知识太阳能中心(Desert Knowledge Australia Solar Center,DKASC)、美国国家可再生能源实验室(National Renewable Energy Laboratory,NREL)以及北京国能日新科技有限公司的光伏功率数据集,从不同的地理环境、不同的气候特征、不同的规模大小电站进行验证。仿真结果表明,该模型较传统的Kalman、LSTM模型具有更高的预测精度,可为光伏并网的稳定和安全运行提供更好的理论支持,对电网调度部门具有较高的参考价值。展开更多
文摘In this paper,by an approximating argument,we obtain two disjoint and infinite sets of solutions for the following elliptic equation with critical Hardy-Sobolev exponents■whereΩis a smooth bounded domain in RN with 0∈?Ωand all the principle curvatures of?Ωat 0 are negative,a∈C1(Ω,R*+),μ>0,0<s<2,1<q<2 and N>2(q+1)/(q-1).By2*:=2N/(N-2)and 2*(s):(2(N-s))/(N-2)we denote the critical Sobolev exponent and Hardy-Sobolev exponent,respectively.
基金the National Natural Science Foundation of China(Grant No.12204406)the National Key Research and Development Program of China(Grant No.2022YFA1405304)the Guangdong Provincial Key Laboratory(Grant No.2020B1212060066)。
文摘We establish a general mapping from one-dimensional non-Hermitian mosaic models to their non-mosaic counterparts.This mapping can give rise to mobility edges and even Lyapunov exponents in the mosaic models if critical points of localization or Lyapunov exponents of localized states in the corresponding non-mosaic models have already been analytically solved.To demonstrate the validity of this mapping,we apply it to two non-Hermitian localization models:an Aubry-Andre-like model with nonreciprocal hopping and complex quasiperiodic potentials,and the Ganeshan-Pixley-Das Sarma model with nonreciprocal hopping.We successfully obtain the mobility edges and Lyapunov exponents in their mosaic models.This general mapping may catalyze further studies on mobility edges,Lyapunov exponents,and other significant quantities pertaining to localization in non-Hermitian mosaic models.
文摘为丰富低维离散混沌系统的动力学特性以及克服脱氧核糖核酸(deoxyribonucleic acid,DNA)编码的引入使混沌图像加密系统安全性易于降低的问题,基于Arnold映射构建具有恒定正Lyapunov指数的2维离散混沌系统,并将其与DNA编码结合,设计一个混沌图像加密方案.所设计的混沌系统模型中不含非线性项,系统具有超混沌动力学行为;加密方案中用于加密的混沌序列为明文图像像素与密钥的加取模运算结果,图像按4×4大小予以分块,扩散算法中的DNA加减、异或、同或等运算分别基于DNA编码规则1、规则4和规则7.仿真实验和性能分析结果表明:加密方案的密钥空间达到2^(266),信息熵为7.9993 bit,密钥灵敏度达到10^(−15),平均像素变化率(number of pixel change rate,NPCR)、统一平均变化强度(unified average change intensity,UACI)、块平均变化强度(block average change intensity,BACI)分别为99.6092%、33.4664%、26.7718%.
文摘针对光伏发电功率具有较强的波动性、间歇性输出,光伏功率预测精度较低,且难于给出具体预测时间长度等问题,提出了一种长相关随机模型分数阶布朗运动(fractional Brownian motion,FBM),用于光伏功率预测。首先,采用重标极差法计算长相关(long-range dependence,LRD)参数-Hurst指数,Hurst指数用于判断光伏功率数据是否满足长相关性,并通过最大李雅普诺夫指数(Lyapunov)计算出模型最大可预测时间尺度;其次,采用随机微分法建立FBM光伏功率预测模型,同时估计FBM预测模型参数值;最后,选取澳大利亚沙漠知识太阳能中心(Desert Knowledge Australia Solar Center,DKASC)、美国国家可再生能源实验室(National Renewable Energy Laboratory,NREL)以及北京国能日新科技有限公司的光伏功率数据集,从不同的地理环境、不同的气候特征、不同的规模大小电站进行验证。仿真结果表明,该模型较传统的Kalman、LSTM模型具有更高的预测精度,可为光伏并网的稳定和安全运行提供更好的理论支持,对电网调度部门具有较高的参考价值。