Multiphase flows are ubiquitous in our daily life and engineering applications. It is important to investigate the flow structures to predict their dynamical behaviors ef- fectively. Lagrangian coherent structures (...Multiphase flows are ubiquitous in our daily life and engineering applications. It is important to investigate the flow structures to predict their dynamical behaviors ef- fectively. Lagrangian coherent structures (LCS) defined by the ridges of the finite-time Lyapunov exponent (FTLE) is utilized in this study to elucidate the multiphase interactions in gaseous jets injected into water and time-dependent turbu- lent cavitation under the framework of Navier-Stokes flow computations. For the gaseous jets injected into water, the highlighted phenomena of the jet transportation can be observed by the LCS method, including expansion, bulge, necking/breaking, and back-attack. Besides, the observation of the LCS reveals that the back-attack phenomenon arises from the fact that the injected gas has difficulties to move toward downstream re- gion after the necking/breaking. For the turbulent cavitating flow, the ridge of the FTLE field can form a LCS to capture the front and boundary of the re-entraint jet when the ad- verse pressure gradient is strong enough. It represents a bar- rier between particles trapped inside the circulation region and those moving downstream. The results indicate that the FFLE field has the potential to identify the structures of mul- tiphase flows, and the LCS can capture the interface/barrier or the vortex/circulation region.展开更多
A new method of predicting chaotic time series is presented based on a local Lyapunov exponent, by quantitatively measuring the exponential rate of separation or attraction of two infinitely close trajectories in stat...A new method of predicting chaotic time series is presented based on a local Lyapunov exponent, by quantitatively measuring the exponential rate of separation or attraction of two infinitely close trajectories in state space. After recon- structing state space from one-dimensional chaotic time series, neighboring multiple-state vectors of the predicting point are selected to deduce the prediction formula by using the definition of the locaI Lyapunov exponent. Numerical simulations are carded out to test its effectiveness and verify its higher precision over two older methods. The effects of the number of referential state vectors and added noise on forecasting accuracy are also studied numerically.展开更多
Statistical properties of stock market time series and the implication of their Hurst exponents are discussed. Hurst exponents of DJIA (Dow Jones Industrial Average) components are tested using re scaled range analy...Statistical properties of stock market time series and the implication of their Hurst exponents are discussed. Hurst exponents of DJIA (Dow Jones Industrial Average) components are tested using re scaled range analysis. In addition to the original stock return series, the linear prediction errors of the daily returns are also tested. Numerical results show that the Hurst exponent analysis can provide some information about the statistical properties of the financial time series.展开更多
Multifractal detrended fluctuation analysis (MF-DFA) is a relatively new method of multifractal analysis. It is extended from detrended fluctuation analysis (DFA), which was developed for detecting the long-range ...Multifractal detrended fluctuation analysis (MF-DFA) is a relatively new method of multifractal analysis. It is extended from detrended fluctuation analysis (DFA), which was developed for detecting the long-range correlation and the fractal properties in stationary and non-stationary time series. Although MF-DFA has become a widely used method, some relationships among the exponents established in the original paper seem to be incorrect under the general situation. In this paper, we theoretically and experimentally demonstrate the invalidity of the expression r(q) = qh(q) - 1 stipulating the relationship between the multifractal exponent T(q) and the generalized Hurst exponent h(q). As a replacement, a general relationship is established on the basis of the universal multifractal formalism for the stationary series as .t-(q) = qh(q) - qH - 1, where H is the nonconservation parameter in the universal multifractal formalism. The singular spectra, a and f(a), are also derived according to this new relationship.展开更多
This paper is concerned with the robust H ∞ control with exponent stability for a class of time delay uncertain systems. Attention is focused on the design of controllers such that the resulting closed loop system...This paper is concerned with the robust H ∞ control with exponent stability for a class of time delay uncertain systems. Attention is focused on the design of controllers such that the resulting closed loop system not only is exponentially stable but also satisfies, H ∞ disturbance attenuance via memoryless state feedback control. Sufficient conditions for feasibility are obtained in terms of LMIs. Moreover, optimization of LMI is considered such that the controller with low gain parameters is formulated.展开更多
Time-resolved particle image velocimetry(TRPIV) experiments are performed to investigate the coherent structure's performance of riblets in a turbulent boundary layer(TBL) at a friction Reynolds number of 185. To...Time-resolved particle image velocimetry(TRPIV) experiments are performed to investigate the coherent structure's performance of riblets in a turbulent boundary layer(TBL) at a friction Reynolds number of 185. To visualize the energetic large-scale coherent structures(CSs) over a smooth surface and riblets, the proper orthogonal decomposition(POD) and finite-time Lyapunov exponent(FTLE) are used to identify the CSs in the TBL. Spatial-temporal correlation is implemented to obtain the characters and transport properties of typical CSs in the FTLE fields. The results demonstrate that the generic flow structures, such as hairpin-like vortices, are also observed in the boundary layer flow over the riblets, consistent with its smooth counterpart. Low-order POD modes are more sensitive to the riblets in comparison with the high-order ones,and the wall-normal movement of the most energy-containing structures are suppressed over riblets. The spatial correlation analysis of the FTLE fields indicates that the evolution process of the hairpin vortex over riblets are inhibited. An apparent decrease of the convection velocity over riblets is noted, which is believed to reduce the ejection/sweep motions associated with high shear stress from the viscous sublayer. These reductions exhibit inhibition of momentum transfer among the structures near the wall in the TBL flows.展开更多
Nonlinear response of the driven Duffing oscillator to periodic or quasi-periodic signals has been well studied. In this paper, we investigate the nonlinear response of the driven Duffing oscillator to non-periodic, m...Nonlinear response of the driven Duffing oscillator to periodic or quasi-periodic signals has been well studied. In this paper, we investigate the nonlinear response of the driven Duffing oscillator to non-periodic, more specifically, chaotic time series. Through numerical simulations, we find that the driven Duffing oscillator can also show regular nonlinear response to the chaotic time series with different degree of chaos as generated by the same chaotic series generating model, and there exists a relationship between the state of the driven Duffing oscillator and the chaoticity of the input signal of the driven Duffing oscillator. One real-world and two artificial chaotic time series are used to verify the new feature of Duffing oscillator. A potential application of the new feature of Duffing oscillator is also indicated.展开更多
In order to characterize synthesizing periodic and chaotic component dynamics in a time series, classical chaotic system-logistic map and Duffing system was examined by time dependent exponent (TDE) of the direct dyna...In order to characterize synthesizing periodic and chaotic component dynamics in a time series, classical chaotic system-logistic map and Duffing system was examined by time dependent exponent (TDE) of the direct dynamical test. The simulative calculation results with the logistic map and Duffing system showed that periods and chaotic dynamics can be readily characterized by computing a series of TDE curves. The method was also applied to study power short-term load time series as well as measured a time series. Their dynamic characteristics of chaotic component and period were conveniently found.展开更多
The chaotic characteristics and maximum predictable time scale of the observation series of hourly water consumption in Hangzhou were investigated using the advanced algorithm presented here is based on the convention...The chaotic characteristics and maximum predictable time scale of the observation series of hourly water consumption in Hangzhou were investigated using the advanced algorithm presented here is based on the conventional Wolf's algorithm for the largest Lyapunov exponent. For comparison, the largest Lyapunov exponents of water consumption series with one-hour and 24-hour intervals were calculated respectively. The results indicated that chaotic characteristics obviously exist in the hourly water consumption system; and that observation series with 24-hour interval have longer maximum predictable scale than hourly series. These findings could have significant practical application for better prediction of urban hourly water consumption.展开更多
This paper deals with a stochastic representation of the rainfall process. The analysis of a rainfall time series shows that cumulative representation of a rainfall time series can be modeled as a non-Gaussian random ...This paper deals with a stochastic representation of the rainfall process. The analysis of a rainfall time series shows that cumulative representation of a rainfall time series can be modeled as a non-Gaussian random walk with a log-normal jump distribution and a time-waiting distribution following a tempered a-stable probability law. Based on the random walk model, a fractional Fokker-Planck equation (FFPE) with tempered a-stable waiting times was obtained. Through the comparison of observed data and simulated results from the random walk model and FFPE model with tempered a-stable waiting times, it can be concluded that the behavior of the rainfall process is globally reproduced, and the FFPE model with tempered a-stable waiting times is more efficient in reproducing the observed behavior.展开更多
The backward nonlinear local Lyapunov exponent method(BNLLE)is applied to quantify the predictability of warm and cold events in the Lorenz model.Results show that the maximum prediction lead times of warm and cold ev...The backward nonlinear local Lyapunov exponent method(BNLLE)is applied to quantify the predictability of warm and cold events in the Lorenz model.Results show that the maximum prediction lead times of warm and cold events present obvious layered structures in phase space.The maximum prediction lead times of each warm(cold)event on individual circles concentric with the distribution of warm(cold)regime events are roughly the same,whereas the maximum prediction lead time of events on other circles are different.Statistical results show that warm events are more predictable than cold events.展开更多
In this study, possible low dimensional chaotic behavior of Sakarya river flow rates is investigated via nonlinear time series techniques. To reveal the chaotic dynamics, the maximal positive Lyapunov exponent is calc...In this study, possible low dimensional chaotic behavior of Sakarya river flow rates is investigated via nonlinear time series techniques. To reveal the chaotic dynamics, the maximal positive Lyapunov exponent is calculated from the reconstructed phase space, which is obtained using the phase space reconstruction method. The method reconstructs a phase space from the scalar time series, which depicts the real system’s invariants Positive values, because the Lyapunov exponent values calculated using the appropriate software program indicate possibility of chaotic behavior. Analyzed data involve the monthly average flow rates of eleven main branches of Sakarya River through the years 1960-2000.展开更多
In this paper the concept of first boundary condition (i)(i = 0, 1, 2,…, n) is proposed based on [1], the existence of two times spline interpolant under first boundary condition is proved using constructivity me...In this paper the concept of first boundary condition (i)(i = 0, 1, 2,…, n) is proposed based on [1], the existence of two times spline interpolant under first boundary condition is proved using constructivity method and the uniqueness of the two times spline interpolant under first boundary condition(n) is proved too.展开更多
A complete spectrum of Lyapunov exponents (LEs) is obtained from 1970— 1985 daily mean pressure measurements at Shanghai by means of a correlation matrix analysis technique and it is found that there exist LEs≥0, an...A complete spectrum of Lyapunov exponents (LEs) is obtained from 1970— 1985 daily mean pressure measurements at Shanghai by means of a correlation matrix analysis technique and it is found that there exist LEs≥0, and <0. with their sum <zero (∑λ_1<0), thus showing the evolution of the climate-weather system represented by the series to be chaotic. The sum of positive LE is known to represent the bodily divergence of the system and the sum of these positive LEs is theoretically found to be Kolmogorov entropy of the system. This paper shows that with the time lag τ=5, the parameter m=2 and the dimensionality d_M=9, the sum of the positive LEs sum fromλ_i>0λ_i=K=0.110405 whereupon T=1 /K =9 is obtained as the predictable time scale, a result close to that acquired by the dynamic-statistical approach in early days and also in agreement with that present by the authors themselves(1991).展开更多
文摘Multiphase flows are ubiquitous in our daily life and engineering applications. It is important to investigate the flow structures to predict their dynamical behaviors ef- fectively. Lagrangian coherent structures (LCS) defined by the ridges of the finite-time Lyapunov exponent (FTLE) is utilized in this study to elucidate the multiphase interactions in gaseous jets injected into water and time-dependent turbu- lent cavitation under the framework of Navier-Stokes flow computations. For the gaseous jets injected into water, the highlighted phenomena of the jet transportation can be observed by the LCS method, including expansion, bulge, necking/breaking, and back-attack. Besides, the observation of the LCS reveals that the back-attack phenomenon arises from the fact that the injected gas has difficulties to move toward downstream re- gion after the necking/breaking. For the turbulent cavitating flow, the ridge of the FTLE field can form a LCS to capture the front and boundary of the re-entraint jet when the ad- verse pressure gradient is strong enough. It represents a bar- rier between particles trapped inside the circulation region and those moving downstream. The results indicate that the FFLE field has the potential to identify the structures of mul- tiphase flows, and the LCS can capture the interface/barrier or the vortex/circulation region.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61201452)
文摘A new method of predicting chaotic time series is presented based on a local Lyapunov exponent, by quantitatively measuring the exponential rate of separation or attraction of two infinitely close trajectories in state space. After recon- structing state space from one-dimensional chaotic time series, neighboring multiple-state vectors of the predicting point are selected to deduce the prediction formula by using the definition of the locaI Lyapunov exponent. Numerical simulations are carded out to test its effectiveness and verify its higher precision over two older methods. The effects of the number of referential state vectors and added noise on forecasting accuracy are also studied numerically.
文摘Statistical properties of stock market time series and the implication of their Hurst exponents are discussed. Hurst exponents of DJIA (Dow Jones Industrial Average) components are tested using re scaled range analysis. In addition to the original stock return series, the linear prediction errors of the daily returns are also tested. Numerical results show that the Hurst exponent analysis can provide some information about the statistical properties of the financial time series.
基金Project supported by the National Natural Science Foundation of China (Grant No.11071282)the Chinese Program for New Century Excellent Talents in University (Grant No.NCET-08-06867)
文摘Multifractal detrended fluctuation analysis (MF-DFA) is a relatively new method of multifractal analysis. It is extended from detrended fluctuation analysis (DFA), which was developed for detecting the long-range correlation and the fractal properties in stationary and non-stationary time series. Although MF-DFA has become a widely used method, some relationships among the exponents established in the original paper seem to be incorrect under the general situation. In this paper, we theoretically and experimentally demonstrate the invalidity of the expression r(q) = qh(q) - 1 stipulating the relationship between the multifractal exponent T(q) and the generalized Hurst exponent h(q). As a replacement, a general relationship is established on the basis of the universal multifractal formalism for the stationary series as .t-(q) = qh(q) - qH - 1, where H is the nonconservation parameter in the universal multifractal formalism. The singular spectra, a and f(a), are also derived according to this new relationship.
文摘This paper is concerned with the robust H ∞ control with exponent stability for a class of time delay uncertain systems. Attention is focused on the design of controllers such that the resulting closed loop system not only is exponentially stable but also satisfies, H ∞ disturbance attenuance via memoryless state feedback control. Sufficient conditions for feasibility are obtained in terms of LMIs. Moreover, optimization of LMI is considered such that the controller with low gain parameters is formulated.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11332006,11732010,11572221,and 11502066)the Natural Science Foundation of Tianjin City(Grant No.18JCQNJC5100)
文摘Time-resolved particle image velocimetry(TRPIV) experiments are performed to investigate the coherent structure's performance of riblets in a turbulent boundary layer(TBL) at a friction Reynolds number of 185. To visualize the energetic large-scale coherent structures(CSs) over a smooth surface and riblets, the proper orthogonal decomposition(POD) and finite-time Lyapunov exponent(FTLE) are used to identify the CSs in the TBL. Spatial-temporal correlation is implemented to obtain the characters and transport properties of typical CSs in the FTLE fields. The results demonstrate that the generic flow structures, such as hairpin-like vortices, are also observed in the boundary layer flow over the riblets, consistent with its smooth counterpart. Low-order POD modes are more sensitive to the riblets in comparison with the high-order ones,and the wall-normal movement of the most energy-containing structures are suppressed over riblets. The spatial correlation analysis of the FTLE fields indicates that the evolution process of the hairpin vortex over riblets are inhibited. An apparent decrease of the convection velocity over riblets is noted, which is believed to reduce the ejection/sweep motions associated with high shear stress from the viscous sublayer. These reductions exhibit inhibition of momentum transfer among the structures near the wall in the TBL flows.
基金supported by the National Natural Science Foundation of China (Grant Nos 40574051 and 40774054)
文摘Nonlinear response of the driven Duffing oscillator to periodic or quasi-periodic signals has been well studied. In this paper, we investigate the nonlinear response of the driven Duffing oscillator to non-periodic, more specifically, chaotic time series. Through numerical simulations, we find that the driven Duffing oscillator can also show regular nonlinear response to the chaotic time series with different degree of chaos as generated by the same chaotic series generating model, and there exists a relationship between the state of the driven Duffing oscillator and the chaoticity of the input signal of the driven Duffing oscillator. One real-world and two artificial chaotic time series are used to verify the new feature of Duffing oscillator. A potential application of the new feature of Duffing oscillator is also indicated.
基金Sponsored by the Scientific Research Fund of Heilongjiang Provincial Education Department(Grant No. 11531306)
文摘In order to characterize synthesizing periodic and chaotic component dynamics in a time series, classical chaotic system-logistic map and Duffing system was examined by time dependent exponent (TDE) of the direct dynamical test. The simulative calculation results with the logistic map and Duffing system showed that periods and chaotic dynamics can be readily characterized by computing a series of TDE curves. The method was also applied to study power short-term load time series as well as measured a time series. Their dynamic characteristics of chaotic component and period were conveniently found.
基金Project (No. 50078048) supported by the National Natural Science Foundation of China
文摘The chaotic characteristics and maximum predictable time scale of the observation series of hourly water consumption in Hangzhou were investigated using the advanced algorithm presented here is based on the conventional Wolf's algorithm for the largest Lyapunov exponent. For comparison, the largest Lyapunov exponents of water consumption series with one-hour and 24-hour intervals were calculated respectively. The results indicated that chaotic characteristics obviously exist in the hourly water consumption system; and that observation series with 24-hour interval have longer maximum predictable scale than hourly series. These findings could have significant practical application for better prediction of urban hourly water consumption.
文摘This paper deals with a stochastic representation of the rainfall process. The analysis of a rainfall time series shows that cumulative representation of a rainfall time series can be modeled as a non-Gaussian random walk with a log-normal jump distribution and a time-waiting distribution following a tempered a-stable probability law. Based on the random walk model, a fractional Fokker-Planck equation (FFPE) with tempered a-stable waiting times was obtained. Through the comparison of observed data and simulated results from the random walk model and FFPE model with tempered a-stable waiting times, it can be concluded that the behavior of the rainfall process is globally reproduced, and the FFPE model with tempered a-stable waiting times is more efficient in reproducing the observed behavior.
基金supported by the National Natural Science Foundation of China(Grant No.41790474)the National Program on Global Change and Air−Sea Interaction(GASI-IPOVAI-03 GASI-IPOVAI-06).
文摘The backward nonlinear local Lyapunov exponent method(BNLLE)is applied to quantify the predictability of warm and cold events in the Lorenz model.Results show that the maximum prediction lead times of warm and cold events present obvious layered structures in phase space.The maximum prediction lead times of each warm(cold)event on individual circles concentric with the distribution of warm(cold)regime events are roughly the same,whereas the maximum prediction lead time of events on other circles are different.Statistical results show that warm events are more predictable than cold events.
文摘In this study, possible low dimensional chaotic behavior of Sakarya river flow rates is investigated via nonlinear time series techniques. To reveal the chaotic dynamics, the maximal positive Lyapunov exponent is calculated from the reconstructed phase space, which is obtained using the phase space reconstruction method. The method reconstructs a phase space from the scalar time series, which depicts the real system’s invariants Positive values, because the Lyapunov exponent values calculated using the appropriate software program indicate possibility of chaotic behavior. Analyzed data involve the monthly average flow rates of eleven main branches of Sakarya River through the years 1960-2000.
文摘In this paper the concept of first boundary condition (i)(i = 0, 1, 2,…, n) is proposed based on [1], the existence of two times spline interpolant under first boundary condition is proved using constructivity method and the uniqueness of the two times spline interpolant under first boundary condition(n) is proved too.
文摘A complete spectrum of Lyapunov exponents (LEs) is obtained from 1970— 1985 daily mean pressure measurements at Shanghai by means of a correlation matrix analysis technique and it is found that there exist LEs≥0, and <0. with their sum <zero (∑λ_1<0), thus showing the evolution of the climate-weather system represented by the series to be chaotic. The sum of positive LE is known to represent the bodily divergence of the system and the sum of these positive LEs is theoretically found to be Kolmogorov entropy of the system. This paper shows that with the time lag τ=5, the parameter m=2 and the dimensionality d_M=9, the sum of the positive LEs sum fromλ_i>0λ_i=K=0.110405 whereupon T=1 /K =9 is obtained as the predictable time scale, a result close to that acquired by the dynamic-statistical approach in early days and also in agreement with that present by the authors themselves(1991).