Neuronal activity,synaptic transmission,and molecular changes in the basolateral amygdala play critical roles in fear memory.Cylindromatosis(CYLD)is a deubiquitinase that negatively regulates the nuclear factor kappa-...Neuronal activity,synaptic transmission,and molecular changes in the basolateral amygdala play critical roles in fear memory.Cylindromatosis(CYLD)is a deubiquitinase that negatively regulates the nuclear factor kappa-B pathway.CYLD is well studied in non-neuronal cells,yet underinvestigated in the brain,where it is highly expressed.Emerging studies have shown involvement of CYLD in the remodeling of glutamatergic synapses,neuroinflammation,fear memory,and anxiety-and autism-like behaviors.However,the precise role of CYLD in glutamatergic neurons is largely unknown.Here,we first proposed involvement of CYLD in cued fear expression.We next constructed transgenic model mice with specific deletion of Cyld from glutamatergic neurons.Our results show that glutamatergic CYLD deficiency exaggerated the expression of cued fear in only male mice.Further,loss of CYLD in glutamatergic neurons resulted in enhanced neuronal activation,impaired excitatory synaptic transmission,and altered levels of glutamate receptors accompanied by over-activation of microglia in the basolateral amygdala of male mice.Altogether,our study suggests a critical role of glutamatergic CYLD in maintaining normal neuronal,synaptic,and microglial activation.This may contribute,at least in part,to cued fear expression.展开更多
AIM: To compare gene expression profiles of pancreatic adenocarcinoma tissue specimens, human pancreatic and colon adenocarcinoma and leukemia cell lines and normal pancreas samples in order to distinguish differenti...AIM: To compare gene expression profiles of pancreatic adenocarcinoma tissue specimens, human pancreatic and colon adenocarcinoma and leukemia cell lines and normal pancreas samples in order to distinguish differentially expressed genes and to validate the differential expression of a subset of genes by quantitative real-time RT-PCR (RT-QPCR) in endoscopic ultrasound-guided fine needle aspiration (EUS-guided FNA) specimens.METHODS: Commercially dedicated cancer cDNA macroarrays (Atlas Human Cancer 1.2) containing 1176 genes were used. Different statistical approaches (hierarchical clustering, principal component analysis (PCA) and SAM) were used to analyze the expression data. RT-QPCR and immunohistochemical studies were used for validation of results.RESULTS: RT-QPCR validated the increased expression of LCN2 (lipocalin 2) and for the first time PLAT (tissue-type plasminogen activator or tPA) in malignant pancreas as compared with normal pancreas. Immunohistochemical analysis confirmed the increased expression of LCN2 protein localized in epithelial cells of ducts invaded by carcinoma. The analysis of PLAT and LCN2 transcripts in 12 samples obtained through EUS-guided FNA from patients with pancreatic adenocarcinoma showed significantly increased expression levels in comparison with those found in normal tissues, indicating that a sufficient amount of high quality RNA can be obtained with this technique.CONCLUSION: Expression profiling is a useful method to identify biomarkers and potential target genes. Molecular analysis of EUS-guided FNA samples in pancreatic cancer appears as a valuable strategy for the diagnosis of pancreatic adenocarcinomas.展开更多
Objective:To explore the function of cluster needling at scalp points therapy on regulating differential protein's expression at different time points in middle cerebral artery occlusion(MCAO)model rats.Methods:Fi...Objective:To explore the function of cluster needling at scalp points therapy on regulating differential protein's expression at different time points in middle cerebral artery occlusion(MCAO)model rats.Methods:Fifty-four rats were divided into three groups randomly and 18 rats in each group.The groups respectively were the model group(group M,n=18),cluster needling at scalp points group(group C,n=18),false operation group(group F,n=18).Each group was then assigned in three subgroups,including 24-h,7-day,and 14-day subgroups.Six rats in each subgroup.Acupuncture at Baihui(GV20)and 2 points beside Baihui,which was 3 e4 mm away from the midline.Longa score was used to evaluated neurological effects.Proteomics methods were used to identify differentially expression proteins with a standard of fold change greater than 1.5 and P<.05 at different times.Results:1.Nerve function scoring:The nerve function scores at 7 and 14 days decreased in group C,which showed better neural function than group M(P<.05).2.Fold change in proteins:Group M showed932 differentially expressed proteins compared with group F,and among them,414 proteins showed significant changes in expression after acupuncture.The expression levels of Cdc42 and GFAP were increased,and Mag,Shank2,and MBP levels were decreased.In the Gene Ontology analysis,the cellular component consisted of the terms cytoplasm,cytoskeleton,lysosome,and plasma membrane.The main related biological processes were cellecell signaling,protein transport,aging,and cell adhesion.Many synaptic and metabolic pathways were found by KEGG analysis.Conclusion:Cluster needling at scalp acupoints can improve the nerve function score and improve dyskinesia in MCAO model rats.Cluster needling at scalp acupoints can regulate the expression of 414 proteins,including Cdc42,GFAP,Mag,Shank2,and MBP,which are related to cerebral ischemia.The differential proteins are major concentration in cytoplasm,cytoskeleton,lysosomes,and plasma membrane,participate in cellecell signaling,protein transport,aging,and cell adhesion,and act through multiple synaptic and metabolic pathways to exert their biological functions.展开更多
Vascular etiology is the second most prevalent cause of cognitive impairment globally.Endothelin-1,which is produced and secreted by endothelial cells and astrocytes,is implicated in the pathogenesis of stroke.However...Vascular etiology is the second most prevalent cause of cognitive impairment globally.Endothelin-1,which is produced and secreted by endothelial cells and astrocytes,is implicated in the pathogenesis of stroke.However,the way in which changes in astrocytic endothelin-1 lead to poststroke cognitive deficits following transient middle cerebral artery occlusion is not well understood.Here,using mice in which astrocytic endothelin-1 was overexpressed,we found that the selective overexpression of endothelin-1 by astrocytic cells led to ischemic stroke-related dementia(1 hour of ischemia;7 days,28 days,or 3 months of reperfusion).We also revealed that astrocytic endothelin-1 overexpression contributed to the role of neural stem cell proliferation but impaired neurogenesis in the dentate gyrus of the hippocampus after middle cerebral artery occlusion.Comprehensive proteome profiles and western blot analysis confirmed that levels of glial fibrillary acidic protein and peroxiredoxin 6,which were differentially expressed in the brain,were significantly increased in mice with astrocytic endothelin-1 overexpression in comparison with wild-type mice 28 days after ischemic stroke.Moreover,the levels of the enriched differentially expressed proteins were closely related to lipid metabolism,as indicated by Kyoto Encyclopedia of Genes and Genomes pathway analysis.Liquid chromatography-mass spectrometry nontargeted metabolite profiling of brain tissues showed that astrocytic endothelin-1 overexpression altered lipid metabolism products such as glycerol phosphatidylcholine,sphingomyelin,and phosphatidic acid.Overall,this study demonstrates that astrocytic endothelin-1 overexpression can impair hippocampal neurogenesis and that it is correlated with lipid metabolism in poststroke cognitive dysfunction.展开更多
Heat shock transcription factors(Hsfs)have important roles during plant growth and development and responses to abiotic stresses.The identification and func-tion of Hsf genes have been thoroughly studied in various he...Heat shock transcription factors(Hsfs)have important roles during plant growth and development and responses to abiotic stresses.The identification and func-tion of Hsf genes have been thoroughly studied in various herbaceous plant species,but not woody species,especially Phoebe bournei,an endangered,unique species in China.In this study,17 members of the Hsf gene family were identi-fied from P.bournei using bioinformatic methods.Phyloge-netic analysis indicated that PbHsf genes were grouped into three subfamilies:A,B,and C.Conserved motifs,three-dimensional structure,and physicochemical properties of the PbHsf proteins were also analyzed.The structure of the PbHsf genes varied in the number of exons and introns.Pre-diction of cis-acting elements in the promoter region indi-cated that PbHsf genes are likely involved in responses to plant hormones and stresses.A collinearity analysis dem-onstrated that expansions of the PbHsf gene family mainly take place via segmental duplication.The expression levels of PbHsf genes varied across different plant tissues.On the basis of the expression profiles of five representative PbHsf genes during heat,cold,salt,and drought stress,PbHsf pro-teins seem to have multiple functions depending on the type of abiotic stress.This systematic,genome-wide investigation of PbHsf genes in P.bournei and their expression patterns provides valuable insights and information for further func-tional dissection of Hsf proteins in this endangered,unique species.展开更多
BACKGROUND Cyclin-dependent kinase 9(CDK9)expression and autophagy in colorectal cancer(CRC)tissues has not been widely studied.CDK9,a key regulator of transcription,may influence the occurrence and progression of CRC...BACKGROUND Cyclin-dependent kinase 9(CDK9)expression and autophagy in colorectal cancer(CRC)tissues has not been widely studied.CDK9,a key regulator of transcription,may influence the occurrence and progression of CRC.The expression of auto-phagy-related genes BECN1 and drug resistance factor ABCG2 may also play a role in CRC.Under normal physiological conditions,autophagy can inhibit tumorigenesis,but once a tumor forms,autophagy may promote tumor growth.Therefore,understanding the relationship between autophagy and cancer,partic-ularly how autophagy promotes tumor growth after its formation,is a key motivation for this research.AIM To investigate the relationship between CDK9 expression and autophagy in CRC,assess differences in autophagy between left and right colon cancer,and analyze the associations of autophagy-related genes with clinical features and prognosis.METHODS We collected tumor tissues and paracarcinoma tissues from colon cancer patients with liver metastasis to observe the level of autophagy in tissues with high levels of CDK9 and low levels of CDK9.We also collected primary tissue from left and right colon cancer patients with liver metastasis to compare the autophagy levels and the expression of BECN1 and ABCG2 in the tumor and paracarcinoma tissues.RESULTS The incidence of autophagy and the expression of BECN1 and ABCG2 were different in left and right colon cancer,and autophagy might be involved in the occurrence of chemotherapy resistance.Further analysis of the rela-tionship between the expression of autophagy-related genes CDK9,ABCG2,and BECN1 and the clinical features and prognosis of colorectal cancer showed that the high expression of CDK9 indicated a poor prognosis in colorectal cancer.CONCLUSION This study laid the foundation for further research on the combination of CDK9 inhibitors and autophagy inhibitors in the treatment of patients with CRC.展开更多
Comparisons of gene expression profiles between primary tumors and metastasis have revealed genes that are implicated in metastasis formation.However,gene expression studies conducted on metastasis samples from the sa...Comparisons of gene expression profiles between primary tumors and metastasis have revealed genes that are implicated in metastasis formation.However,gene expression studies conducted on metastasis samples from the same primary site usually do not discriminate between different secondary sites.Although the change in the expression of number of genes is expected to be common to metastasis from the same primary but different secondary sites,herein the data that point to substantial differences are presented.Furthermore,the reciprocal communication between metastatic and host cells that is influencing these differences is outlined to emphasize the need for stratification of metastasis samples in gene expression studies.展开更多
A major problem in forest clonal productivity is the loss of morphogenetic capability with the increasing age of plants. However, despite of the importance of loss of morphogenetic competence, very little research has...A major problem in forest clonal productivity is the loss of morphogenetic capability with the increasing age of plants. However, despite of the importance of loss of morphogenetic competence, very little research has been done about the underlying mechanisms involved in this process. For this reason, a gene expression analysis using dot blot technique was performed in needles and stems of 1- and 3-year old Pinus radiata rootstock plants with a proved decrease in morphogenetic competence. Needles of one year old rootstock plants showed a higher number of up-regulated in genes mainly corresponding to photosynthesis and protein synthesis, degradation and modification, reflecting a higher number of active pathways in younger hedges, contrary to the older ones. Gene expression profiles found in stems are in agreement with those found in needles, indicating more active pathways in younger rootstock plants than in older ones. Several transcripts regulating transcription and translation were up-regulated in young competent tissues. Three-year-old stems presented an increase in the expression of an ethylene response factor, involved in plant organ senescence, indicating that pathways involved in senescence and ageing might inhibit the adventitious root formation, as in the older cuttings.展开更多
Background Milk synthesis in lactating animals demands high energy metabolism,which results in an increased production of reactive oxygen metabolites(ROM)causing an imbalance between oxidants and antioxidants thereby ...Background Milk synthesis in lactating animals demands high energy metabolism,which results in an increased production of reactive oxygen metabolites(ROM)causing an imbalance between oxidants and antioxidants thereby inducing oxidative stress(OS)on the animals.To mitigate OS and postpartum disorders in dairy goats and gain insight into the impact of dietary choices on redox status during lactation,a feeding trial was conducted using alfalfa silage inoculated with a high-antioxidant strain of Lactiplantibacillus plantarum.Methods Twenty-four Guanzhong dairy goats(38.1±1.20 kg)were randomly assigned to two dietary treatments:one containing silage inoculated with L.plantarum MTD/1(RSMTD-1),and the other containing silage inoculated with high antioxidant activity L.plantarum 24-7(ES24-7).Results ES24-7-inoculated silage exhibited better fermentation quality and antioxidant activity compared to RSMTD-1.The ES24-7 diet elevated the total antioxidant capacity(T-AOC),superoxide dismutase(SOD),glutathione peroxi-dase(GSH-Px),and catalase(CAT)activities in milk,serum,and feces of lactating goats(with the exception of T-AOC in milk).Additionally,the diet containing ES24-7 inoculated silage enhanced casein yield,milk free fatty acid(FFA)content,and vitamin A level in the goats’milk.Furthermore,an increase of immunoglobulin(Ig)A,IgG,IgM,inter-leukin(IL)-4,and IL-10 concentrations were observed,coupled with a reduction in IL-1β,IL-2,IL-6,interferon(IFN)-γ,and tumor necrosis factor(TNF)-αconcentrations in the serum of lactating goats fed ES24-7.Higher concentrations of total volatile fatty acid(VFA),acetate,and propionate were observed in the rumen fluid of dairy goats fed ES24-7 inoculated silage.Moreover,the diet containing ES24-7 inoculated silage significantly upregulated the expression of nuclear factor erythroid 2 like 2(NFE2L2),beta-carotene oxygenase 1(BCO1),SOD1,SOD2,SOD3,GPX2,CAT,glu-tathione-disulfide reductase(GSR),and heme oxygenase 1(HMOX1)genes in the mammary gland,while decreased the levels of NADPH oxidase 4(NOX4),TNF,and interferon gamma(IFNG).Conclusions These findings indicated that feeding L.plantarum 24-7 inoculated alfalfa silage not only improved rumen fermentation and milk quality in lactating dairy goats but also boosted their immunity and antioxidant status by modulating the expression of several genes related to antioxidant and inflammation in the mammary gland.展开更多
Excessive abdominal fat deposition seriously restricts the production efficiency of broilers.Several studies found that dietary supplemental manganese(Mn)could effectively reduce the abdominal fat deposition of broile...Excessive abdominal fat deposition seriously restricts the production efficiency of broilers.Several studies found that dietary supplemental manganese(Mn)could effectively reduce the abdominal fat deposition of broilers,but the underlying mechanisms remain unclear.The present study aimed to investigate the effect of dietary supplementation with the inorganic or organic Mn on abdominal fat deposition,and enzyme activity and gene expression involved in lipid metabolism in the abdominal fat of male or female broilers.A total of 4201-d-old AA broilers(half males and half females)were randomly allotted by body weight and gender to 1 of 6 treatments with 10 replicates cages of 7 chicks per cage in a completely randomized design involving a 3(dietary Mn addition)×2(gender)factorial arrangement.Male or female broilers were fed with the Mn-unsupplemented basal diets containing 17.52 mg Mn kg^(-1)(d 1-21)and 15.62 mg Mn kg^(-1)(d 22-42)by analysis or the basal diets supplemented with 110 mg Mn kg^(-1)(d 1-21)and 80 mg Mn kg^(-1)(d 22-42)as either the Mn sulfate or the Mn proteinate with moderate chelation strength(Mn-Prot M)for 42 d.The results showed that the interaction between dietary Mn addition and gender had no impact(P>0.05)on any of the measured parameters;abdominal fat percentage of broilers was decreased(P<0.003)by Mn addition;Mn addition increased(P<0.004)adipose triglyceride lipase(ATGL)activity,while Mn-Prot M decreased(P<0.002)the fatty acid synthase(FAS)activity in the abdominal fat of broilers compared to the control;Mn addition decreased(P<0.009)diacylglycerol acyltransferase 2(DGAT2)mRNA expression level and peroxisome proliferator-activated receptor γ(PPARγ)mRNA and protein expression levels,but up-regulated(P<0.05)the ATGL mRNA and protein expression levels in the abdominal fat of broilers.It was concluded that dietary supplementation with Mn inhibited the abdominal fat deposition of broilers possibly via decreasing the expression of PPARγand DGAT2 as well as increasing the expression and activity of ATGL in the abdominal fat of broilers,and Mn-Prot M was more effective in inhibiting the FAS acitivity.展开更多
Pyraclostrobin(PYR),a widely used fungicide,has negative effects on fish and algae,but its toxicity in protozoa remains unclear.In this study,the effects of PYR on the growth,oxidative stress,and gene expression relat...Pyraclostrobin(PYR),a widely used fungicide,has negative effects on fish and algae,but its toxicity in protozoa remains unclear.In this study,the effects of PYR on the growth,oxidative stress,and gene expression related to stress and ATP-binding cassette(ABC)transporters in Tetrahymena thermophila were investigated.The result showed that the 96-h IC_(50)of PYR against T.thermophila was 17.2 mg/L.Moreover,PYR inhibited the growth of T.thermophila in concentration-or time-dependent manner.A morphological study revealed that the shape and size of T.thermophila changed,and damage of cell membrane surface was observed by scanning electron microscopy after 96 h of PYR exposure.The activities of superoxide dismutase(SOD)and catalase(CAT)increased throughout the experiment.In contrast,the glutathione(GSH)content was increased at 24 h and 48 h of exposure and decreased at 96 h.Moreover,a significant increase in malondialdehyde(MDA)level was observed in T.thermophila after96 h of exposure.Furthermore,PYR upregulated the HSP703,HSP705,GPx2,and ABAC15 gene expression in the 0.1–5-mg/L groups and downregulated the HSP704,HSP90,TGR,and ABCC52 mRNA levels at 96 h of exposure.These results suggest that PYR may exert adverse effects on T.thermophila by inducing oxidative stress and changing the gene expression related to ABC transporters and stress,which may enrich the understanding of the toxicity mechanism of PYR in aquatic organisms and provide reference data for aquatic ecological risk assessments.展开更多
AIM:To investigate the molecular mechanisms underlying the influence of hypoxia and alpha-ketoglutaric acid(α-KG)on scleral collagen expression.METHODS:Meta-analysis and clinical statistics were used to prove the cha...AIM:To investigate the molecular mechanisms underlying the influence of hypoxia and alpha-ketoglutaric acid(α-KG)on scleral collagen expression.METHODS:Meta-analysis and clinical statistics were used to prove the changes in choroidal thickness(ChT)during myopia.The establishment of a hypoxic myopia model(HYP)for rabbit scleral fibroblasts through hypoxic culture and the effects of hypoxia andα-KG on collagen expression were demonstrated by Sirius red staining.Transcriptome analysis was used to verify the genes and pathways that hypoxia andα-KG affect collagen expression.Finally,real-time quantitative reverse transcription polymerase chain reaction(RT-qPCR)was used for reverse verification.RESULTS:Meta-analysis results aligned with clinical statistics,revealing a thinning of ChT,leading to scleral hypoxia.Sirius red staining indicated lower collagen expression in the HYP group and higher collagen expression in the HYP+α-KG group,showed that hypoxia reduced collagen expression in scleral fibroblasts,whileα-KG can elevated collagen expression under HYP conditions.Transcriptome analysis unveiled the related genes and signaling pathways of hypoxia andα-KG affect scleral collagen expression and the results were verified by RT-qPCR.CONCLUSION:The potential molecular mechanisms through which hypoxia andα-KG influencing myopia is unraveled and three novel genes TLCD4,TBC1D4,and EPHX3 are identified.These findings provide a new perspective on the prevention and treatment of myopia via regulating collagen expression.展开更多
Background Photosystem II(PSII)constitutes an intricate assembly of protein pigments,featuring extrinsic and intrinsic polypeptides within the photosynthetic membrane.The low-molecular-weight transmembrane protein Psb...Background Photosystem II(PSII)constitutes an intricate assembly of protein pigments,featuring extrinsic and intrinsic polypeptides within the photosynthetic membrane.The low-molecular-weight transmembrane protein PsbX has been identified in PSII,which is associated with the oxygen-evolving complex.The expression of PsbX gene protein is regulated by light.PsbX’s central role involves the regulation of PSII,facilitating the binding of quinone molecules to the Qb(PsbA)site,and it additionally plays a crucial role in optimizing the efficiency of photosynthesis.Despite these insights,a comprehensive understanding of the PsbX gene’s functions has remained elusive.Results In this study,we identified ten PsbX genes in Gossypium hirsutum L.The phylogenetic analysis results showed that 40 genes from nine species were classified into one clade.The resulting sequence logos exhibited substantial conservation across the N and C terminals at multiple sites among all Gossypium species.Furthermore,the ortholo-gous/paralogous,Ka/Ks ratio revealed that cotton PsbX genes subjected to positive as well as purifying selection pressure might lead to limited divergence,which resulted in the whole genome and segmental duplication.The expression patterns of GhPsbX genes exhibited variations across specific tissues,as indicated by the analysis.Moreover,the expression of GhPsbX genes could potentially be regulated in response to salt,intense light,and drought stresses.Therefore,GhPsbX genes may play a significant role in the modulation of photosynthesis under adverse abiotic conditions.Conclusion We examined the structure and function of PsbX gene family very first by using comparative genom-ics and systems biology approaches in cotton.It seems that PsbX gene family plays a vital role during the growth and development of cotton under stress conditions.Collectively,the results of this study provide basic information to unveil the molecular and physiological function of PsbX genes of cotton plants.展开更多
The estimation of pain intensity is critical for medical diagnosis and treatment of patients.With the development of image monitoring technology and artificial intelligence,automatic pain assessment based on facial ex...The estimation of pain intensity is critical for medical diagnosis and treatment of patients.With the development of image monitoring technology and artificial intelligence,automatic pain assessment based on facial expression and behavioral analysis shows a potential value in clinical applications.This paper reports a framework of convolutional neural network with global and local attention mechanism(GLA-CNN)for the effective detection of pain intensity at four-level thresholds using facial expression images.GLA-CNN includes two modules,namely global attention network(GANet)and local attention network(LANet).LANet is responsible for extracting representative local patch features of faces,while GANet extracts whole facial features to compensate for the ignored correlative features between patches.In the end,the global correlational and local subtle features are fused for the final estimation of pain intensity.Experiments under the UNBC-McMaster Shoulder Pain database demonstrate that GLA-CNN outperforms other state-of-the-art methods.Additionally,a visualization analysis is conducted to present the feature map of GLA-CNN,intuitively showing that it can extract not only local pain features but also global correlative facial ones.Our study demonstrates that pain assessment based on facial expression is a non-invasive and feasible method,and can be employed as an auxiliary pain assessment tool in clinical practice.展开更多
In smart classrooms, conducting multi-face expression recognition based on existing hardware devices to assessstudents’ group emotions can provide educators with more comprehensive and intuitive classroom effect anal...In smart classrooms, conducting multi-face expression recognition based on existing hardware devices to assessstudents’ group emotions can provide educators with more comprehensive and intuitive classroom effect analysis,thereby continuouslypromotingthe improvementof teaching quality.However,most existingmulti-face expressionrecognition methods adopt a multi-stage approach, with an overall complex process, poor real-time performance,and insufficient generalization ability. In addition, the existing facial expression datasets are mostly single faceimages, which are of low quality and lack specificity, also restricting the development of this research. This paperaims to propose an end-to-end high-performance multi-face expression recognition algorithm model suitable forsmart classrooms, construct a high-quality multi-face expression dataset to support algorithm research, and applythe model to group emotion assessment to expand its application value. To this end, we propose an end-to-endmulti-face expression recognition algorithm model for smart classrooms (E2E-MFERC). In order to provide highqualityand highly targeted data support for model research, we constructed a multi-face expression dataset inreal classrooms (MFED), containing 2,385 images and a total of 18,712 expression labels, collected from smartclassrooms. In constructing E2E-MFERC, by introducing Re-parameterization visual geometry group (RepVGG)block and symmetric positive definite convolution (SPD-Conv) modules to enhance representational capability;combined with the cross stage partial network fusion module optimized by attention mechanism (C2f_Attention),it strengthens the ability to extract key information;adopts asymptotic feature pyramid network (AFPN) featurefusion tailored to classroomscenes and optimizes the head prediction output size;achieves high-performance endto-end multi-face expression detection. Finally, we apply the model to smart classroom group emotion assessmentand provide design references for classroom effect analysis evaluation metrics. Experiments based on MFED showthat the mAP and F1-score of E2E-MFERC on classroom evaluation data reach 83.6% and 0.77, respectively,improving the mAP of same-scale You Only Look Once version 5 (YOLOv5) and You Only Look Once version8 (YOLOv8) by 6.8% and 2.5%, respectively, and the F1-score by 0.06 and 0.04, respectively. E2E-MFERC modelhas obvious advantages in both detection speed and accuracy, which can meet the practical needs of real-timemulti-face expression analysis in classrooms, and serve the application of teaching effect assessment very well.展开更多
The cytokinin oxidase/dehydrogenase(CKX)enzyme is essential for controlling thefluctuating levels of endogen-ous cytokinin(CK)and has a significant impact on different aspects of plant growth and development.Nonethe-les...The cytokinin oxidase/dehydrogenase(CKX)enzyme is essential for controlling thefluctuating levels of endogen-ous cytokinin(CK)and has a significant impact on different aspects of plant growth and development.Nonethe-less,there is limited knowledge about CKX genes in tomato(Solanum lycopersicum L.).Here we performed genome-wide identification and analysis of nine SlCKX family members in tomatoes using bioinformatics tools.The results revealed that nine SlCKX genes were unevenly distributed onfive chromosomes(Chr.1,Chr.4,Chr.8,Chr.10,and Chr.12).The amino acid length,isoelectric points,and molecular weight of the nine SlCKX proteins ranged from 453 to 553,5.77 to 8.59,and 51.661 to 62.494 kD,respectively.Subcellular localization analysis indi-cated that SlCKX2 proteins were located in both the vacuole and cytoplasmic matrix;SlCKX3 and SlCKX5 pro-teins were located in the vacuole;and SlCKX1,4,6,7,8,and 9 proteins were located in the cytoplasmic matrix.Furthermore,we observed differences in the gene structures and phylogenetic relationships of SlCKX proteins among different members.SlCKX1-9 were positioned on two out of the three branches of the CKX phylogenetic tree in the multispecies phylogenetic tree construction,revealing their strong conservation within phylogenetic subgroups.Unique patterns of expression of CKX genes were noticed in callus cultures exposed to varying con-centrations of exogenous ZT,suggesting their roles in specific developmental and physiological functions in the regeneration system.These results may facilitate subsequent functional analysis of SlCKX genes and provide valu-able insights for establishing an efficient regeneration system for tomatoes.展开更多
Convolutional neural networks struggle to accurately handle changes in angles and twists in the direction of images,which affects their ability to recognize patterns based on internal feature levels. In contrast, Caps...Convolutional neural networks struggle to accurately handle changes in angles and twists in the direction of images,which affects their ability to recognize patterns based on internal feature levels. In contrast, CapsNet overcomesthese limitations by vectorizing information through increased directionality and magnitude, ensuring that spatialinformation is not overlooked. Therefore, this study proposes a novel expression recognition technique calledCAPSULE-VGG, which combines the strengths of CapsNet and convolutional neural networks. By refining andintegrating features extracted by a convolutional neural network before introducing theminto CapsNet, ourmodelenhances facial recognition capabilities. Compared to traditional neural network models, our approach offersfaster training pace, improved convergence speed, and higher accuracy rates approaching stability. Experimentalresults demonstrate that our method achieves recognition rates of 74.14% for the FER2013 expression dataset and99.85% for the CK+ expression dataset. By contrasting these findings with those obtained using conventionalexpression recognition techniques and incorporating CapsNet’s advantages, we effectively address issues associatedwith convolutional neural networks while increasing expression identification accuracy.展开更多
The SWEET(sugar will eventually be exported transporter)family proteins are a recently identified class of sugar transporters that are essential for various physiological processes.Although the functions of the SWEET p...The SWEET(sugar will eventually be exported transporter)family proteins are a recently identified class of sugar transporters that are essential for various physiological processes.Although the functions of the SWEET proteins have been identified in a number of species,to date,there have been no reports of the functions of the SWEET genes in woodland strawberries(Fragaria vesca).In this study,we identified 15 genes that were highly homolo-gous to the A.thaliana AtSWEET genes and designated them as FvSWEET1–FvSWEET15.We then conducted a structural and evolutionary analysis of these 15 FvSWEET genes.The phylogenetic analysis enabled us to categor-ize the predicted 15 SWEET proteins into four distinct groups.We observed slight variations in the exon‒intron structures of these genes,while the motifs and domain structures remained highly conserved.Additionally,the developmental and biological stress expression profiles of the 15 FvSWEET genes were extracted and analyzed.Finally,WGCNA coexpression network analysis was run to search for possible interacting genes of FvSWEET genes.The results showed that the FvSWEET10 genes interacted with 20 other genes,playing roles in response to bacterial and fungal infections.The outcomes of this study provide insights into the further study of FvSWEET genes and may also aid in the functional characterization of the FvSWEET genes in woodland strawberries.展开更多
Genes in the glycogen synthase kinase 3(GSK3)family are essential in regulating plant response to stressful conditions.This study employed bioinformatics to uncover the GSK3 gene family from the sunflower genome datab...Genes in the glycogen synthase kinase 3(GSK3)family are essential in regulating plant response to stressful conditions.This study employed bioinformatics to uncover the GSK3 gene family from the sunflower genome database.The expressions of GSK3 genes in different tissues and stress treatments,such as salt,drought,and cold,were assessed using transcriptome sequencing and quantitative real-time PCR(qRT-PCR).The study results revealed that the 12 GSK3 genes of sunflower,belonging to four classes(Classes I–IV),contained the GSK3 kinase domain and 11–13 exons.The majority of GSK3 genes were highly expressed in the leaf axil and flower,while their expression levels were relatively lower in the leaf.As a result of salt stress,six of the GSK3 genes(HaSK11,HaSK22,HaSK23,HaSK32,HaSK33,and HaSK41)displayed a notable increase in expression,while HaSK14 and HaSK21 experienced a significant decrease.With regard to drought stress,five of the GSK3 genes(HaSK11,HaSK13,HaSK21,HaSK22,and HaSK33)experienced a remarkable rise in expression.When exposed to cold stress,seven of the GSK3 genes(HaSK11,HaSK12,HaSK13,HaSK32,HaSK33,HaSK41,and HaSK42)showed a substantial increase,whereas HaSK21 and HaSK23 had a sharp decline.This research is of great importance in understanding the abiotic resistance mechanism of sunflowers and developing new varieties with improved stress resistance.展开更多
BACKGROUND Patatin like phospholipase domain containing 8(PNPLA8)has been shown to play a significant role in various cancer entities.Previous studies have focused on its roles as an antioxidant and in lipid peroxidat...BACKGROUND Patatin like phospholipase domain containing 8(PNPLA8)has been shown to play a significant role in various cancer entities.Previous studies have focused on its roles as an antioxidant and in lipid peroxidation.However,the role of PNPLA8 in colorectal cancer(CRC)progression is unclear.AIM To explore the prognostic effects of PNPLA8 expression in CRC.METHODS A retrospective cohort containing 751 consecutive CRC patients was enrolled.PNPLA8 expression in tumor samples was evaluated by immunohistochemistry staining and semi-quantitated with immunoreactive scores.CRC patients were divided into high and low PNPLA8 expression groups based on the cut-off va-lues,which were calculated by X-tile software.The prognostic value of PNPLA8 was identified using univariate and multivariate Cox regression analysis.The over-all survival(OS)rates of CRC patients in the study cohort were compared with Kaplan-Meier analysis and Log-rank test.RESULTS PNPLA8 expression was significantly associated with distant metastases in our cohort(P=0.048).CRC patients with high PNPLA8 expression indicated poor OS(median OS=35.3,P=0.005).CRC patients with a higher PNPLA8 expression at either stage I and II or stage III and IV had statistically significant shorter OS.For patients with left-sided colon and rectal cancer,the survival curves of two PN-PLA8-expression groups showed statistically significant differences.Multivariate analysis also confirmed that high PNPLA8 expression was an independent prog-nostic factor for overall survival(hazard ratio HR=1.328,95%CI:1.016-1.734,P=0.038).展开更多
基金supported by the National Natural Science Foundation of China,Nos.32371065(to CL)and 32170950(to LY)the Natural Science Foundation of the Guangdong Province,No.2023A1515010899(to CL)the Science and Technology Projects in Guangzhou,Nos.2023A4J0578 and 2024A03J0180(to CW)。
文摘Neuronal activity,synaptic transmission,and molecular changes in the basolateral amygdala play critical roles in fear memory.Cylindromatosis(CYLD)is a deubiquitinase that negatively regulates the nuclear factor kappa-B pathway.CYLD is well studied in non-neuronal cells,yet underinvestigated in the brain,where it is highly expressed.Emerging studies have shown involvement of CYLD in the remodeling of glutamatergic synapses,neuroinflammation,fear memory,and anxiety-and autism-like behaviors.However,the precise role of CYLD in glutamatergic neurons is largely unknown.Here,we first proposed involvement of CYLD in cued fear expression.We next constructed transgenic model mice with specific deletion of Cyld from glutamatergic neurons.Our results show that glutamatergic CYLD deficiency exaggerated the expression of cued fear in only male mice.Further,loss of CYLD in glutamatergic neurons resulted in enhanced neuronal activation,impaired excitatory synaptic transmission,and altered levels of glutamate receptors accompanied by over-activation of microglia in the basolateral amygdala of male mice.Altogether,our study suggests a critical role of glutamatergic CYLD in maintaining normal neuronal,synaptic,and microglial activation.This may contribute,at least in part,to cued fear expression.
基金Supported by Contrat Universite Paul Sabatier,Toulouse,France,ASUPS 2000(N.Vaysse)AOL DRC Hopitaux de Toulouse 2001,(L.Buscail)Region Midi-Pyrenees(L.Buscail)H.Laurell was supported by a grant from European Community Plan 99 ECC QLG3-CT-1999-0908(C.Susini)The Agilent 2100 Bioanalyzer and the phosphoimager(Molecular Dynamics,Sunnyvale,CA,USA)were at the Transcriptome Platform,Toulouse Genopole,and at the molecular biology platform at the Institute Louis Bugnard,IFR31,Toulouse,France,respectively
文摘AIM: To compare gene expression profiles of pancreatic adenocarcinoma tissue specimens, human pancreatic and colon adenocarcinoma and leukemia cell lines and normal pancreas samples in order to distinguish differentially expressed genes and to validate the differential expression of a subset of genes by quantitative real-time RT-PCR (RT-QPCR) in endoscopic ultrasound-guided fine needle aspiration (EUS-guided FNA) specimens.METHODS: Commercially dedicated cancer cDNA macroarrays (Atlas Human Cancer 1.2) containing 1176 genes were used. Different statistical approaches (hierarchical clustering, principal component analysis (PCA) and SAM) were used to analyze the expression data. RT-QPCR and immunohistochemical studies were used for validation of results.RESULTS: RT-QPCR validated the increased expression of LCN2 (lipocalin 2) and for the first time PLAT (tissue-type plasminogen activator or tPA) in malignant pancreas as compared with normal pancreas. Immunohistochemical analysis confirmed the increased expression of LCN2 protein localized in epithelial cells of ducts invaded by carcinoma. The analysis of PLAT and LCN2 transcripts in 12 samples obtained through EUS-guided FNA from patients with pancreatic adenocarcinoma showed significantly increased expression levels in comparison with those found in normal tissues, indicating that a sufficient amount of high quality RNA can be obtained with this technique.CONCLUSION: Expression profiling is a useful method to identify biomarkers and potential target genes. Molecular analysis of EUS-guided FNA samples in pancreatic cancer appears as a valuable strategy for the diagnosis of pancreatic adenocarcinomas.
基金National Natural Science Foundation of China(No.81473775)。
文摘Objective:To explore the function of cluster needling at scalp points therapy on regulating differential protein's expression at different time points in middle cerebral artery occlusion(MCAO)model rats.Methods:Fifty-four rats were divided into three groups randomly and 18 rats in each group.The groups respectively were the model group(group M,n=18),cluster needling at scalp points group(group C,n=18),false operation group(group F,n=18).Each group was then assigned in three subgroups,including 24-h,7-day,and 14-day subgroups.Six rats in each subgroup.Acupuncture at Baihui(GV20)and 2 points beside Baihui,which was 3 e4 mm away from the midline.Longa score was used to evaluated neurological effects.Proteomics methods were used to identify differentially expression proteins with a standard of fold change greater than 1.5 and P<.05 at different times.Results:1.Nerve function scoring:The nerve function scores at 7 and 14 days decreased in group C,which showed better neural function than group M(P<.05).2.Fold change in proteins:Group M showed932 differentially expressed proteins compared with group F,and among them,414 proteins showed significant changes in expression after acupuncture.The expression levels of Cdc42 and GFAP were increased,and Mag,Shank2,and MBP levels were decreased.In the Gene Ontology analysis,the cellular component consisted of the terms cytoplasm,cytoskeleton,lysosome,and plasma membrane.The main related biological processes were cellecell signaling,protein transport,aging,and cell adhesion.Many synaptic and metabolic pathways were found by KEGG analysis.Conclusion:Cluster needling at scalp acupoints can improve the nerve function score and improve dyskinesia in MCAO model rats.Cluster needling at scalp acupoints can regulate the expression of 414 proteins,including Cdc42,GFAP,Mag,Shank2,and MBP,which are related to cerebral ischemia.The differential proteins are major concentration in cytoplasm,cytoskeleton,lysosomes,and plasma membrane,participate in cellecell signaling,protein transport,aging,and cell adhesion,and act through multiple synaptic and metabolic pathways to exert their biological functions.
基金financially supported by the National Natural Science Foundation of China,No.81303115,81774042 (both to XC)the Pearl River S&T Nova Program of Guangzhou,No.201806010025 (to XC)+3 种基金the Specialty Program of Guangdong Province Hospital of Chinese Medicine of China,No.YN2018ZD07 (to XC)the Natural Science Foundatior of Guangdong Province of China,No.2023A1515012174 (to JL)the Science and Technology Program of Guangzhou of China,No.20210201 0268 (to XC),20210201 0339 (to JS)Guangdong Provincial Key Laboratory of Research on Emergency in TCM,Nos.2018-75,2019-140 (to JS)
文摘Vascular etiology is the second most prevalent cause of cognitive impairment globally.Endothelin-1,which is produced and secreted by endothelial cells and astrocytes,is implicated in the pathogenesis of stroke.However,the way in which changes in astrocytic endothelin-1 lead to poststroke cognitive deficits following transient middle cerebral artery occlusion is not well understood.Here,using mice in which astrocytic endothelin-1 was overexpressed,we found that the selective overexpression of endothelin-1 by astrocytic cells led to ischemic stroke-related dementia(1 hour of ischemia;7 days,28 days,or 3 months of reperfusion).We also revealed that astrocytic endothelin-1 overexpression contributed to the role of neural stem cell proliferation but impaired neurogenesis in the dentate gyrus of the hippocampus after middle cerebral artery occlusion.Comprehensive proteome profiles and western blot analysis confirmed that levels of glial fibrillary acidic protein and peroxiredoxin 6,which were differentially expressed in the brain,were significantly increased in mice with astrocytic endothelin-1 overexpression in comparison with wild-type mice 28 days after ischemic stroke.Moreover,the levels of the enriched differentially expressed proteins were closely related to lipid metabolism,as indicated by Kyoto Encyclopedia of Genes and Genomes pathway analysis.Liquid chromatography-mass spectrometry nontargeted metabolite profiling of brain tissues showed that astrocytic endothelin-1 overexpression altered lipid metabolism products such as glycerol phosphatidylcholine,sphingomyelin,and phosphatidic acid.Overall,this study demonstrates that astrocytic endothelin-1 overexpression can impair hippocampal neurogenesis and that it is correlated with lipid metabolism in poststroke cognitive dysfunction.
基金supported by the Fujian Province Seed Industry Innovation and Industrialization Project“Innovation and Industrialization Development of Precious Tree Seed Industries(Phoebe bornei)”(ZYCX-LY-202102)the Sub-project of National Key R&D Program“Phoebe bornei Efficient Cultivation Technology”(2016YFD0600603-2).
文摘Heat shock transcription factors(Hsfs)have important roles during plant growth and development and responses to abiotic stresses.The identification and func-tion of Hsf genes have been thoroughly studied in various herbaceous plant species,but not woody species,especially Phoebe bournei,an endangered,unique species in China.In this study,17 members of the Hsf gene family were identi-fied from P.bournei using bioinformatic methods.Phyloge-netic analysis indicated that PbHsf genes were grouped into three subfamilies:A,B,and C.Conserved motifs,three-dimensional structure,and physicochemical properties of the PbHsf proteins were also analyzed.The structure of the PbHsf genes varied in the number of exons and introns.Pre-diction of cis-acting elements in the promoter region indi-cated that PbHsf genes are likely involved in responses to plant hormones and stresses.A collinearity analysis dem-onstrated that expansions of the PbHsf gene family mainly take place via segmental duplication.The expression levels of PbHsf genes varied across different plant tissues.On the basis of the expression profiles of five representative PbHsf genes during heat,cold,salt,and drought stress,PbHsf pro-teins seem to have multiple functions depending on the type of abiotic stress.This systematic,genome-wide investigation of PbHsf genes in P.bournei and their expression patterns provides valuable insights and information for further func-tional dissection of Hsf proteins in this endangered,unique species.
基金the Science and Technology Development Fund of Tianjin Education Commission for Higher Education,No.2020KJ133Tianjin Key Medical Discipline(Specialty)Construction Project,No.TJYXZDXK-009A.
文摘BACKGROUND Cyclin-dependent kinase 9(CDK9)expression and autophagy in colorectal cancer(CRC)tissues has not been widely studied.CDK9,a key regulator of transcription,may influence the occurrence and progression of CRC.The expression of auto-phagy-related genes BECN1 and drug resistance factor ABCG2 may also play a role in CRC.Under normal physiological conditions,autophagy can inhibit tumorigenesis,but once a tumor forms,autophagy may promote tumor growth.Therefore,understanding the relationship between autophagy and cancer,partic-ularly how autophagy promotes tumor growth after its formation,is a key motivation for this research.AIM To investigate the relationship between CDK9 expression and autophagy in CRC,assess differences in autophagy between left and right colon cancer,and analyze the associations of autophagy-related genes with clinical features and prognosis.METHODS We collected tumor tissues and paracarcinoma tissues from colon cancer patients with liver metastasis to observe the level of autophagy in tissues with high levels of CDK9 and low levels of CDK9.We also collected primary tissue from left and right colon cancer patients with liver metastasis to compare the autophagy levels and the expression of BECN1 and ABCG2 in the tumor and paracarcinoma tissues.RESULTS The incidence of autophagy and the expression of BECN1 and ABCG2 were different in left and right colon cancer,and autophagy might be involved in the occurrence of chemotherapy resistance.Further analysis of the rela-tionship between the expression of autophagy-related genes CDK9,ABCG2,and BECN1 and the clinical features and prognosis of colorectal cancer showed that the high expression of CDK9 indicated a poor prognosis in colorectal cancer.CONCLUSION This study laid the foundation for further research on the combination of CDK9 inhibitors and autophagy inhibitors in the treatment of patients with CRC.
基金This work was supported by MY ZABA START 2019 donation from Zagrebačka banka:https://www.zaba.hr/home/en/about-us/community-involvement/my-zabastartThe funder had no role in study design,data collection,analysis,and interpretation,decision to publish,or preparation of the manuscript.
文摘Comparisons of gene expression profiles between primary tumors and metastasis have revealed genes that are implicated in metastasis formation.However,gene expression studies conducted on metastasis samples from the same primary site usually do not discriminate between different secondary sites.Although the change in the expression of number of genes is expected to be common to metastasis from the same primary but different secondary sites,herein the data that point to substantial differences are presented.Furthermore,the reciprocal communication between metastatic and host cells that is influencing these differences is outlined to emphasize the need for stratification of metastasis samples in gene expression studies.
文摘A major problem in forest clonal productivity is the loss of morphogenetic capability with the increasing age of plants. However, despite of the importance of loss of morphogenetic competence, very little research has been done about the underlying mechanisms involved in this process. For this reason, a gene expression analysis using dot blot technique was performed in needles and stems of 1- and 3-year old Pinus radiata rootstock plants with a proved decrease in morphogenetic competence. Needles of one year old rootstock plants showed a higher number of up-regulated in genes mainly corresponding to photosynthesis and protein synthesis, degradation and modification, reflecting a higher number of active pathways in younger hedges, contrary to the older ones. Gene expression profiles found in stems are in agreement with those found in needles, indicating more active pathways in younger rootstock plants than in older ones. Several transcripts regulating transcription and translation were up-regulated in young competent tissues. Three-year-old stems presented an increase in the expression of an ethylene response factor, involved in plant organ senescence, indicating that pathways involved in senescence and ageing might inhibit the adventitious root formation, as in the older cuttings.
基金supported by the National Natural Science Foundation of China (No. U20A2002)China Postdoctoral Science Foundation (No. 2023T160284)recipient of a research productivity fellowship from CNPq (National Council of Scientific and Technological Development) in Brazil
文摘Background Milk synthesis in lactating animals demands high energy metabolism,which results in an increased production of reactive oxygen metabolites(ROM)causing an imbalance between oxidants and antioxidants thereby inducing oxidative stress(OS)on the animals.To mitigate OS and postpartum disorders in dairy goats and gain insight into the impact of dietary choices on redox status during lactation,a feeding trial was conducted using alfalfa silage inoculated with a high-antioxidant strain of Lactiplantibacillus plantarum.Methods Twenty-four Guanzhong dairy goats(38.1±1.20 kg)were randomly assigned to two dietary treatments:one containing silage inoculated with L.plantarum MTD/1(RSMTD-1),and the other containing silage inoculated with high antioxidant activity L.plantarum 24-7(ES24-7).Results ES24-7-inoculated silage exhibited better fermentation quality and antioxidant activity compared to RSMTD-1.The ES24-7 diet elevated the total antioxidant capacity(T-AOC),superoxide dismutase(SOD),glutathione peroxi-dase(GSH-Px),and catalase(CAT)activities in milk,serum,and feces of lactating goats(with the exception of T-AOC in milk).Additionally,the diet containing ES24-7 inoculated silage enhanced casein yield,milk free fatty acid(FFA)content,and vitamin A level in the goats’milk.Furthermore,an increase of immunoglobulin(Ig)A,IgG,IgM,inter-leukin(IL)-4,and IL-10 concentrations were observed,coupled with a reduction in IL-1β,IL-2,IL-6,interferon(IFN)-γ,and tumor necrosis factor(TNF)-αconcentrations in the serum of lactating goats fed ES24-7.Higher concentrations of total volatile fatty acid(VFA),acetate,and propionate were observed in the rumen fluid of dairy goats fed ES24-7 inoculated silage.Moreover,the diet containing ES24-7 inoculated silage significantly upregulated the expression of nuclear factor erythroid 2 like 2(NFE2L2),beta-carotene oxygenase 1(BCO1),SOD1,SOD2,SOD3,GPX2,CAT,glu-tathione-disulfide reductase(GSR),and heme oxygenase 1(HMOX1)genes in the mammary gland,while decreased the levels of NADPH oxidase 4(NOX4),TNF,and interferon gamma(IFNG).Conclusions These findings indicated that feeding L.plantarum 24-7 inoculated alfalfa silage not only improved rumen fermentation and milk quality in lactating dairy goats but also boosted their immunity and antioxidant status by modulating the expression of several genes related to antioxidant and inflammation in the mammary gland.
基金financially supported by the National Natural Science Foundation of China(32102559)the Jiangsu Shuang Chuang Tuan Dui Program,China(JSSCTD202147)the Jiangsu Shuang Chuang Ren Cai Program,China(JSSCRC2021541)。
文摘Excessive abdominal fat deposition seriously restricts the production efficiency of broilers.Several studies found that dietary supplemental manganese(Mn)could effectively reduce the abdominal fat deposition of broilers,but the underlying mechanisms remain unclear.The present study aimed to investigate the effect of dietary supplementation with the inorganic or organic Mn on abdominal fat deposition,and enzyme activity and gene expression involved in lipid metabolism in the abdominal fat of male or female broilers.A total of 4201-d-old AA broilers(half males and half females)were randomly allotted by body weight and gender to 1 of 6 treatments with 10 replicates cages of 7 chicks per cage in a completely randomized design involving a 3(dietary Mn addition)×2(gender)factorial arrangement.Male or female broilers were fed with the Mn-unsupplemented basal diets containing 17.52 mg Mn kg^(-1)(d 1-21)and 15.62 mg Mn kg^(-1)(d 22-42)by analysis or the basal diets supplemented with 110 mg Mn kg^(-1)(d 1-21)and 80 mg Mn kg^(-1)(d 22-42)as either the Mn sulfate or the Mn proteinate with moderate chelation strength(Mn-Prot M)for 42 d.The results showed that the interaction between dietary Mn addition and gender had no impact(P>0.05)on any of the measured parameters;abdominal fat percentage of broilers was decreased(P<0.003)by Mn addition;Mn addition increased(P<0.004)adipose triglyceride lipase(ATGL)activity,while Mn-Prot M decreased(P<0.002)the fatty acid synthase(FAS)activity in the abdominal fat of broilers compared to the control;Mn addition decreased(P<0.009)diacylglycerol acyltransferase 2(DGAT2)mRNA expression level and peroxisome proliferator-activated receptor γ(PPARγ)mRNA and protein expression levels,but up-regulated(P<0.05)the ATGL mRNA and protein expression levels in the abdominal fat of broilers.It was concluded that dietary supplementation with Mn inhibited the abdominal fat deposition of broilers possibly via decreasing the expression of PPARγand DGAT2 as well as increasing the expression and activity of ATGL in the abdominal fat of broilers,and Mn-Prot M was more effective in inhibiting the FAS acitivity.
基金the Key Scientific Research Projects of Henan Province to College Youth Backbone Teacher(No.2021118)the National Key Research and Development Program of China(No.2021YFE0112000)。
文摘Pyraclostrobin(PYR),a widely used fungicide,has negative effects on fish and algae,but its toxicity in protozoa remains unclear.In this study,the effects of PYR on the growth,oxidative stress,and gene expression related to stress and ATP-binding cassette(ABC)transporters in Tetrahymena thermophila were investigated.The result showed that the 96-h IC_(50)of PYR against T.thermophila was 17.2 mg/L.Moreover,PYR inhibited the growth of T.thermophila in concentration-or time-dependent manner.A morphological study revealed that the shape and size of T.thermophila changed,and damage of cell membrane surface was observed by scanning electron microscopy after 96 h of PYR exposure.The activities of superoxide dismutase(SOD)and catalase(CAT)increased throughout the experiment.In contrast,the glutathione(GSH)content was increased at 24 h and 48 h of exposure and decreased at 96 h.Moreover,a significant increase in malondialdehyde(MDA)level was observed in T.thermophila after96 h of exposure.Furthermore,PYR upregulated the HSP703,HSP705,GPx2,and ABAC15 gene expression in the 0.1–5-mg/L groups and downregulated the HSP704,HSP90,TGR,and ABCC52 mRNA levels at 96 h of exposure.These results suggest that PYR may exert adverse effects on T.thermophila by inducing oxidative stress and changing the gene expression related to ABC transporters and stress,which may enrich the understanding of the toxicity mechanism of PYR in aquatic organisms and provide reference data for aquatic ecological risk assessments.
基金Supported by the Natural Science Foundation of Shandong Province,China(No.ZR2023MA069)the Medical and Health Technology Development Project of Shandong Province,China(No.202202050602)+1 种基金College Students’Innovation and Entrepreneurship Training Program(No.S202410438017)the Graduate Student Research Grant from Shandong Second Medical University.
文摘AIM:To investigate the molecular mechanisms underlying the influence of hypoxia and alpha-ketoglutaric acid(α-KG)on scleral collagen expression.METHODS:Meta-analysis and clinical statistics were used to prove the changes in choroidal thickness(ChT)during myopia.The establishment of a hypoxic myopia model(HYP)for rabbit scleral fibroblasts through hypoxic culture and the effects of hypoxia andα-KG on collagen expression were demonstrated by Sirius red staining.Transcriptome analysis was used to verify the genes and pathways that hypoxia andα-KG affect collagen expression.Finally,real-time quantitative reverse transcription polymerase chain reaction(RT-qPCR)was used for reverse verification.RESULTS:Meta-analysis results aligned with clinical statistics,revealing a thinning of ChT,leading to scleral hypoxia.Sirius red staining indicated lower collagen expression in the HYP group and higher collagen expression in the HYP+α-KG group,showed that hypoxia reduced collagen expression in scleral fibroblasts,whileα-KG can elevated collagen expression under HYP conditions.Transcriptome analysis unveiled the related genes and signaling pathways of hypoxia andα-KG affect scleral collagen expression and the results were verified by RT-qPCR.CONCLUSION:The potential molecular mechanisms through which hypoxia andα-KG influencing myopia is unraveled and three novel genes TLCD4,TBC1D4,and EPHX3 are identified.These findings provide a new perspective on the prevention and treatment of myopia via regulating collagen expression.
基金supported by National Natural Science Foundation of China(32060466)Chinese Academy of Agricultural Sciences。
文摘Background Photosystem II(PSII)constitutes an intricate assembly of protein pigments,featuring extrinsic and intrinsic polypeptides within the photosynthetic membrane.The low-molecular-weight transmembrane protein PsbX has been identified in PSII,which is associated with the oxygen-evolving complex.The expression of PsbX gene protein is regulated by light.PsbX’s central role involves the regulation of PSII,facilitating the binding of quinone molecules to the Qb(PsbA)site,and it additionally plays a crucial role in optimizing the efficiency of photosynthesis.Despite these insights,a comprehensive understanding of the PsbX gene’s functions has remained elusive.Results In this study,we identified ten PsbX genes in Gossypium hirsutum L.The phylogenetic analysis results showed that 40 genes from nine species were classified into one clade.The resulting sequence logos exhibited substantial conservation across the N and C terminals at multiple sites among all Gossypium species.Furthermore,the ortholo-gous/paralogous,Ka/Ks ratio revealed that cotton PsbX genes subjected to positive as well as purifying selection pressure might lead to limited divergence,which resulted in the whole genome and segmental duplication.The expression patterns of GhPsbX genes exhibited variations across specific tissues,as indicated by the analysis.Moreover,the expression of GhPsbX genes could potentially be regulated in response to salt,intense light,and drought stresses.Therefore,GhPsbX genes may play a significant role in the modulation of photosynthesis under adverse abiotic conditions.Conclusion We examined the structure and function of PsbX gene family very first by using comparative genom-ics and systems biology approaches in cotton.It seems that PsbX gene family plays a vital role during the growth and development of cotton under stress conditions.Collectively,the results of this study provide basic information to unveil the molecular and physiological function of PsbX genes of cotton plants.
基金supported by the National Natural Science Foundation of China under Grant No.62276051the Natural Science Foundation of Sichuan Province under Grant No.2023NSFSC0640Medical Industry Information Integration Collaborative Innovation Project of Yangtze Delta Region Institute under Grant No.U0723002。
文摘The estimation of pain intensity is critical for medical diagnosis and treatment of patients.With the development of image monitoring technology and artificial intelligence,automatic pain assessment based on facial expression and behavioral analysis shows a potential value in clinical applications.This paper reports a framework of convolutional neural network with global and local attention mechanism(GLA-CNN)for the effective detection of pain intensity at four-level thresholds using facial expression images.GLA-CNN includes two modules,namely global attention network(GANet)and local attention network(LANet).LANet is responsible for extracting representative local patch features of faces,while GANet extracts whole facial features to compensate for the ignored correlative features between patches.In the end,the global correlational and local subtle features are fused for the final estimation of pain intensity.Experiments under the UNBC-McMaster Shoulder Pain database demonstrate that GLA-CNN outperforms other state-of-the-art methods.Additionally,a visualization analysis is conducted to present the feature map of GLA-CNN,intuitively showing that it can extract not only local pain features but also global correlative facial ones.Our study demonstrates that pain assessment based on facial expression is a non-invasive and feasible method,and can be employed as an auxiliary pain assessment tool in clinical practice.
基金the Science and Technology Project of State Grid Corporation of China under Grant No.5700-202318292A-1-1-ZN.
文摘In smart classrooms, conducting multi-face expression recognition based on existing hardware devices to assessstudents’ group emotions can provide educators with more comprehensive and intuitive classroom effect analysis,thereby continuouslypromotingthe improvementof teaching quality.However,most existingmulti-face expressionrecognition methods adopt a multi-stage approach, with an overall complex process, poor real-time performance,and insufficient generalization ability. In addition, the existing facial expression datasets are mostly single faceimages, which are of low quality and lack specificity, also restricting the development of this research. This paperaims to propose an end-to-end high-performance multi-face expression recognition algorithm model suitable forsmart classrooms, construct a high-quality multi-face expression dataset to support algorithm research, and applythe model to group emotion assessment to expand its application value. To this end, we propose an end-to-endmulti-face expression recognition algorithm model for smart classrooms (E2E-MFERC). In order to provide highqualityand highly targeted data support for model research, we constructed a multi-face expression dataset inreal classrooms (MFED), containing 2,385 images and a total of 18,712 expression labels, collected from smartclassrooms. In constructing E2E-MFERC, by introducing Re-parameterization visual geometry group (RepVGG)block and symmetric positive definite convolution (SPD-Conv) modules to enhance representational capability;combined with the cross stage partial network fusion module optimized by attention mechanism (C2f_Attention),it strengthens the ability to extract key information;adopts asymptotic feature pyramid network (AFPN) featurefusion tailored to classroomscenes and optimizes the head prediction output size;achieves high-performance endto-end multi-face expression detection. Finally, we apply the model to smart classroom group emotion assessmentand provide design references for classroom effect analysis evaluation metrics. Experiments based on MFED showthat the mAP and F1-score of E2E-MFERC on classroom evaluation data reach 83.6% and 0.77, respectively,improving the mAP of same-scale You Only Look Once version 5 (YOLOv5) and You Only Look Once version8 (YOLOv8) by 6.8% and 2.5%, respectively, and the F1-score by 0.06 and 0.04, respectively. E2E-MFERC modelhas obvious advantages in both detection speed and accuracy, which can meet the practical needs of real-timemulti-face expression analysis in classrooms, and serve the application of teaching effect assessment very well.
基金funded by the Special Project for Science and Technology Innovation Platform of Fujian Academy of Agricultural Sciences,China(CXPT2023003)the Freely Explore Scientific and Technology Innovation Program of Fujian Academy of Agricultural Sciences(ZYTS202207)the Program for Innovative Research Team of Fujian Academy of Agricultural Sciences,China(CXTD2021006-3)。
文摘The cytokinin oxidase/dehydrogenase(CKX)enzyme is essential for controlling thefluctuating levels of endogen-ous cytokinin(CK)and has a significant impact on different aspects of plant growth and development.Nonethe-less,there is limited knowledge about CKX genes in tomato(Solanum lycopersicum L.).Here we performed genome-wide identification and analysis of nine SlCKX family members in tomatoes using bioinformatics tools.The results revealed that nine SlCKX genes were unevenly distributed onfive chromosomes(Chr.1,Chr.4,Chr.8,Chr.10,and Chr.12).The amino acid length,isoelectric points,and molecular weight of the nine SlCKX proteins ranged from 453 to 553,5.77 to 8.59,and 51.661 to 62.494 kD,respectively.Subcellular localization analysis indi-cated that SlCKX2 proteins were located in both the vacuole and cytoplasmic matrix;SlCKX3 and SlCKX5 pro-teins were located in the vacuole;and SlCKX1,4,6,7,8,and 9 proteins were located in the cytoplasmic matrix.Furthermore,we observed differences in the gene structures and phylogenetic relationships of SlCKX proteins among different members.SlCKX1-9 were positioned on two out of the three branches of the CKX phylogenetic tree in the multispecies phylogenetic tree construction,revealing their strong conservation within phylogenetic subgroups.Unique patterns of expression of CKX genes were noticed in callus cultures exposed to varying con-centrations of exogenous ZT,suggesting their roles in specific developmental and physiological functions in the regeneration system.These results may facilitate subsequent functional analysis of SlCKX genes and provide valu-able insights for establishing an efficient regeneration system for tomatoes.
基金the following funds:The Key Scientific Research Project of Anhui Provincial Research Preparation Plan in 2023(Nos.2023AH051806,2023AH052097,2023AH052103)Anhui Province Quality Engineering Project(Nos.2022sx099,2022cxtd097)+1 种基金University-Level Teaching and Research Key Projects(Nos.ch21jxyj01,XLZ-202208,XLZ-202106)Special Support Plan for Innovation and Entrepreneurship Leaders in Anhui Province。
文摘Convolutional neural networks struggle to accurately handle changes in angles and twists in the direction of images,which affects their ability to recognize patterns based on internal feature levels. In contrast, CapsNet overcomesthese limitations by vectorizing information through increased directionality and magnitude, ensuring that spatialinformation is not overlooked. Therefore, this study proposes a novel expression recognition technique calledCAPSULE-VGG, which combines the strengths of CapsNet and convolutional neural networks. By refining andintegrating features extracted by a convolutional neural network before introducing theminto CapsNet, ourmodelenhances facial recognition capabilities. Compared to traditional neural network models, our approach offersfaster training pace, improved convergence speed, and higher accuracy rates approaching stability. Experimentalresults demonstrate that our method achieves recognition rates of 74.14% for the FER2013 expression dataset and99.85% for the CK+ expression dataset. By contrasting these findings with those obtained using conventionalexpression recognition techniques and incorporating CapsNet’s advantages, we effectively address issues associatedwith convolutional neural networks while increasing expression identification accuracy.
基金funded by the Fujian Provincial Science and Technology Project(2021N5014,2022N5006)the Key Research Project of the Putian Science and Technology Bureau(2021ZP08,2021ZP09,2021ZP10,2021ZP11,2023GJGZ001).
文摘The SWEET(sugar will eventually be exported transporter)family proteins are a recently identified class of sugar transporters that are essential for various physiological processes.Although the functions of the SWEET proteins have been identified in a number of species,to date,there have been no reports of the functions of the SWEET genes in woodland strawberries(Fragaria vesca).In this study,we identified 15 genes that were highly homolo-gous to the A.thaliana AtSWEET genes and designated them as FvSWEET1–FvSWEET15.We then conducted a structural and evolutionary analysis of these 15 FvSWEET genes.The phylogenetic analysis enabled us to categor-ize the predicted 15 SWEET proteins into four distinct groups.We observed slight variations in the exon‒intron structures of these genes,while the motifs and domain structures remained highly conserved.Additionally,the developmental and biological stress expression profiles of the 15 FvSWEET genes were extracted and analyzed.Finally,WGCNA coexpression network analysis was run to search for possible interacting genes of FvSWEET genes.The results showed that the FvSWEET10 genes interacted with 20 other genes,playing roles in response to bacterial and fungal infections.The outcomes of this study provide insights into the further study of FvSWEET genes and may also aid in the functional characterization of the FvSWEET genes in woodland strawberries.
基金financed by the Anhui Provincial Central Leading Local Science and Technology Development Special Fund Project(202007d06020021)Project of Suzhou Science and Technology Bureau(2021143).
文摘Genes in the glycogen synthase kinase 3(GSK3)family are essential in regulating plant response to stressful conditions.This study employed bioinformatics to uncover the GSK3 gene family from the sunflower genome database.The expressions of GSK3 genes in different tissues and stress treatments,such as salt,drought,and cold,were assessed using transcriptome sequencing and quantitative real-time PCR(qRT-PCR).The study results revealed that the 12 GSK3 genes of sunflower,belonging to four classes(Classes I–IV),contained the GSK3 kinase domain and 11–13 exons.The majority of GSK3 genes were highly expressed in the leaf axil and flower,while their expression levels were relatively lower in the leaf.As a result of salt stress,six of the GSK3 genes(HaSK11,HaSK22,HaSK23,HaSK32,HaSK33,and HaSK41)displayed a notable increase in expression,while HaSK14 and HaSK21 experienced a significant decrease.With regard to drought stress,five of the GSK3 genes(HaSK11,HaSK13,HaSK21,HaSK22,and HaSK33)experienced a remarkable rise in expression.When exposed to cold stress,seven of the GSK3 genes(HaSK11,HaSK12,HaSK13,HaSK32,HaSK33,HaSK41,and HaSK42)showed a substantial increase,whereas HaSK21 and HaSK23 had a sharp decline.This research is of great importance in understanding the abiotic resistance mechanism of sunflowers and developing new varieties with improved stress resistance.
基金This study was approved by the Clinical Research Ethics Committee of Zhongshan Hospital,Fudan University.
文摘BACKGROUND Patatin like phospholipase domain containing 8(PNPLA8)has been shown to play a significant role in various cancer entities.Previous studies have focused on its roles as an antioxidant and in lipid peroxidation.However,the role of PNPLA8 in colorectal cancer(CRC)progression is unclear.AIM To explore the prognostic effects of PNPLA8 expression in CRC.METHODS A retrospective cohort containing 751 consecutive CRC patients was enrolled.PNPLA8 expression in tumor samples was evaluated by immunohistochemistry staining and semi-quantitated with immunoreactive scores.CRC patients were divided into high and low PNPLA8 expression groups based on the cut-off va-lues,which were calculated by X-tile software.The prognostic value of PNPLA8 was identified using univariate and multivariate Cox regression analysis.The over-all survival(OS)rates of CRC patients in the study cohort were compared with Kaplan-Meier analysis and Log-rank test.RESULTS PNPLA8 expression was significantly associated with distant metastases in our cohort(P=0.048).CRC patients with high PNPLA8 expression indicated poor OS(median OS=35.3,P=0.005).CRC patients with a higher PNPLA8 expression at either stage I and II or stage III and IV had statistically significant shorter OS.For patients with left-sided colon and rectal cancer,the survival curves of two PN-PLA8-expression groups showed statistically significant differences.Multivariate analysis also confirmed that high PNPLA8 expression was an independent prog-nostic factor for overall survival(hazard ratio HR=1.328,95%CI:1.016-1.734,P=0.038).