期刊文献+
共找到45篇文章
< 1 2 3 >
每页显示 20 50 100
E2E-MFERC:AMulti-Face Expression Recognition Model for Group Emotion Assessment
1
作者 Lin Wang Juan Zhao +1 位作者 Hu Song Xiaolong Xu 《Computers, Materials & Continua》 SCIE EI 2024年第4期1105-1135,共31页
In smart classrooms, conducting multi-face expression recognition based on existing hardware devices to assessstudents’ group emotions can provide educators with more comprehensive and intuitive classroom effect anal... In smart classrooms, conducting multi-face expression recognition based on existing hardware devices to assessstudents’ group emotions can provide educators with more comprehensive and intuitive classroom effect analysis,thereby continuouslypromotingthe improvementof teaching quality.However,most existingmulti-face expressionrecognition methods adopt a multi-stage approach, with an overall complex process, poor real-time performance,and insufficient generalization ability. In addition, the existing facial expression datasets are mostly single faceimages, which are of low quality and lack specificity, also restricting the development of this research. This paperaims to propose an end-to-end high-performance multi-face expression recognition algorithm model suitable forsmart classrooms, construct a high-quality multi-face expression dataset to support algorithm research, and applythe model to group emotion assessment to expand its application value. To this end, we propose an end-to-endmulti-face expression recognition algorithm model for smart classrooms (E2E-MFERC). In order to provide highqualityand highly targeted data support for model research, we constructed a multi-face expression dataset inreal classrooms (MFED), containing 2,385 images and a total of 18,712 expression labels, collected from smartclassrooms. In constructing E2E-MFERC, by introducing Re-parameterization visual geometry group (RepVGG)block and symmetric positive definite convolution (SPD-Conv) modules to enhance representational capability;combined with the cross stage partial network fusion module optimized by attention mechanism (C2f_Attention),it strengthens the ability to extract key information;adopts asymptotic feature pyramid network (AFPN) featurefusion tailored to classroomscenes and optimizes the head prediction output size;achieves high-performance endto-end multi-face expression detection. Finally, we apply the model to smart classroom group emotion assessmentand provide design references for classroom effect analysis evaluation metrics. Experiments based on MFED showthat the mAP and F1-score of E2E-MFERC on classroom evaluation data reach 83.6% and 0.77, respectively,improving the mAP of same-scale You Only Look Once version 5 (YOLOv5) and You Only Look Once version8 (YOLOv8) by 6.8% and 2.5%, respectively, and the F1-score by 0.06 and 0.04, respectively. E2E-MFERC modelhas obvious advantages in both detection speed and accuracy, which can meet the practical needs of real-timemulti-face expression analysis in classrooms, and serve the application of teaching effect assessment very well. 展开更多
关键词 Multi-face expression recognition smart classroom end-to-end detection group emotion assessment
下载PDF
A Facial Expression Recognition Method Integrating Uncertainty Estimation and Active Learning
2
作者 Yujian Wang Jianxun Zhang Renhao Sun 《Computers, Materials & Continua》 SCIE EI 2024年第10期533-548,共16页
The effectiveness of facial expression recognition(FER)algorithms hinges on the model’s quality and the availability of a substantial amount of labeled expression data.However,labeling large datasets demands signific... The effectiveness of facial expression recognition(FER)algorithms hinges on the model’s quality and the availability of a substantial amount of labeled expression data.However,labeling large datasets demands significant human,time,and financial resources.Although active learning methods have mitigated the dependency on extensive labeled data,a cold-start problem persists in small to medium-sized expression recognition datasets.This issue arises because the initial labeled data often fails to represent the full spectrum of facial expression characteristics.This paper introduces an active learning approach that integrates uncertainty estimation,aiming to improve the precision of facial expression recognition regardless of dataset scale variations.The method is divided into two primary phases.First,the model undergoes self-supervised pre-training using contrastive learning and uncertainty estimation to bolster its feature extraction capabilities.Second,the model is fine-tuned using the prior knowledge obtained from the pre-training phase to significantly improve recognition accuracy.In the pretraining phase,the model employs contrastive learning to extract fundamental feature representations from the complete unlabeled dataset.These features are then weighted through a self-attention mechanism with rank regularization.Subsequently,data from the low-weighted set is relabeled to further refine the model’s feature extraction ability.The pre-trained model is then utilized in active learning to select and label information-rich samples more efficiently.Experimental results demonstrate that the proposed method significantly outperforms existing approaches,achieving an improvement in recognition accuracy of 5.09%and 3.82%over the best existing active learning methods,Margin,and Least Confidence methods,respectively,and a 1.61%improvement compared to the conventional segmented active learning method. 展开更多
关键词 expression recognition active learning self-supervised learning uncertainty estimation
下载PDF
Expression Recognition Method Based on Convolutional Neural Network and Capsule Neural Network
3
作者 Zhanfeng Wang Lisha Yao 《Computers, Materials & Continua》 SCIE EI 2024年第4期1659-1677,共19页
Convolutional neural networks struggle to accurately handle changes in angles and twists in the direction of images,which affects their ability to recognize patterns based on internal feature levels. In contrast, Caps... Convolutional neural networks struggle to accurately handle changes in angles and twists in the direction of images,which affects their ability to recognize patterns based on internal feature levels. In contrast, CapsNet overcomesthese limitations by vectorizing information through increased directionality and magnitude, ensuring that spatialinformation is not overlooked. Therefore, this study proposes a novel expression recognition technique calledCAPSULE-VGG, which combines the strengths of CapsNet and convolutional neural networks. By refining andintegrating features extracted by a convolutional neural network before introducing theminto CapsNet, ourmodelenhances facial recognition capabilities. Compared to traditional neural network models, our approach offersfaster training pace, improved convergence speed, and higher accuracy rates approaching stability. Experimentalresults demonstrate that our method achieves recognition rates of 74.14% for the FER2013 expression dataset and99.85% for the CK+ expression dataset. By contrasting these findings with those obtained using conventionalexpression recognition techniques and incorporating CapsNet’s advantages, we effectively address issues associatedwith convolutional neural networks while increasing expression identification accuracy. 展开更多
关键词 expression recognition capsule neural network convolutional neural network
下载PDF
Facial Expression Recognition Based on Multi-Channel Attention Residual Network 被引量:3
4
作者 Tongping Shen Huanqing Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第4期539-560,共22页
For the problems of complex model structure and too many training parameters in facial expression recognition algorithms,we proposed a residual network structure with a multi-headed channel attention(MCA)module.The mi... For the problems of complex model structure and too many training parameters in facial expression recognition algorithms,we proposed a residual network structure with a multi-headed channel attention(MCA)module.The migration learning algorithm is used to pre-train the convolutional layer parameters and mitigate the overfitting caused by the insufficient number of training samples.The designed MCA module is integrated into the ResNet18 backbone network.The attention mechanism highlights important information and suppresses irrelevant information by assigning different coefficients or weights,and the multi-head structure focuses more on the local features of the pictures,which improves the efficiency of facial expression recognition.Experimental results demonstrate that the model proposed in this paper achieves excellent recognition results in Fer2013,CK+and Jaffe datasets,with accuracy rates of 72.7%,98.8%and 93.33%,respectively. 展开更多
关键词 Facial expression recognition channel attention ResNet18 DATASET
下载PDF
Facial Expression Recognition Model Depending on Optimized Support Vector Machine 被引量:1
5
作者 Amel Ali Alhussan Fatma M.Talaat +4 位作者 El-Sayed M.El-kenawy Abdelaziz A.Abdelhamid Abdelhameed Ibrahim Doaa Sami Khafaga Mona Alnaggar 《Computers, Materials & Continua》 SCIE EI 2023年第7期499-515,共17页
In computer vision,emotion recognition using facial expression images is considered an important research issue.Deep learning advances in recent years have aided in attaining improved results in this issue.According t... In computer vision,emotion recognition using facial expression images is considered an important research issue.Deep learning advances in recent years have aided in attaining improved results in this issue.According to recent studies,multiple facial expressions may be included in facial photographs representing a particular type of emotion.It is feasible and useful to convert face photos into collections of visual words and carry out global expression recognition.The main contribution of this paper is to propose a facial expression recognitionmodel(FERM)depending on an optimized Support Vector Machine(SVM).To test the performance of the proposed model(FERM),AffectNet is used.AffectNet uses 1250 emotion-related keywords in six different languages to search three major search engines and get over 1,000,000 facial photos online.The FERM is composed of three main phases:(i)the Data preparation phase,(ii)Applying grid search for optimization,and(iii)the categorization phase.Linear discriminant analysis(LDA)is used to categorize the data into eight labels(neutral,happy,sad,surprised,fear,disgust,angry,and contempt).Due to using LDA,the performance of categorization via SVM has been obviously enhanced.Grid search is used to find the optimal values for hyperparameters of SVM(C and gamma).The proposed optimized SVM algorithm has achieved an accuracy of 99%and a 98%F1 score. 展开更多
关键词 Facial expression recognition machine learning linear dis-criminant analysis(LDA) support vector machine(SVM) grid search
下载PDF
A Facial Expression Emotion Recognition Based Human-robot Interaction System 被引量:5
6
作者 Zhentao Liu Min Wu +5 位作者 Weihua Cao Luefeng Chen Jianping Xu Ri Zhang Mengtian Zhou Junwei Mao 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第4期668-676,共9页
A facial expression emotion recognition based human-robot interaction(FEER-HRI) system is proposed, for which a four-layer system framework is designed. The FEERHRI system enables the robots not only to recognize huma... A facial expression emotion recognition based human-robot interaction(FEER-HRI) system is proposed, for which a four-layer system framework is designed. The FEERHRI system enables the robots not only to recognize human emotions, but also to generate facial expression for adapting to human emotions. A facial emotion recognition method based on2D-Gabor, uniform local binary pattern(LBP) operator, and multiclass extreme learning machine(ELM) classifier is presented,which is applied to real-time facial expression recognition for robots. Facial expressions of robots are represented by simple cartoon symbols and displayed by a LED screen equipped in the robots, which can be easily understood by human. Four scenarios,i.e., guiding, entertainment, home service and scene simulation are performed in the human-robot interaction experiment, in which smooth communication is realized by facial expression recognition of humans and facial expression generation of robots within 2 seconds. As a few prospective applications, the FEERHRI system can be applied in home service, smart home, safe driving, and so on. 展开更多
关键词 Emotion generation facial expression emotion recognition(FEER) human-robot interaction(HRI) system design
下载PDF
The deep spatiotemporal network with dual-flow fusion for video-oriented facial expression recognition
7
作者 Chenquan Gan Jinhui Yao +2 位作者 Shuaiying Ma Zufan Zhang Lianxiang Zhu 《Digital Communications and Networks》 SCIE CSCD 2023年第6期1441-1447,共7页
The video-oriented facial expression recognition has always been an important issue in emotion perception.At present,the key challenge in most existing methods is how to effectively extract robust features to characte... The video-oriented facial expression recognition has always been an important issue in emotion perception.At present,the key challenge in most existing methods is how to effectively extract robust features to characterize facial appearance and geometry changes caused by facial motions.On this basis,the video in this paper is divided into multiple segments,each of which is simultaneously described by optical flow and facial landmark trajectory.To deeply delve the emotional information of these two representations,we propose a Deep Spatiotemporal Network with Dual-flow Fusion(defined as DSN-DF),which highlights the region and strength of expressions by spatiotemporal appearance features and the speed of change by spatiotemporal geometry features.Finally,experiments are implemented on CKþand MMI datasets to demonstrate the superiority of the proposed method. 展开更多
关键词 Facial expression recognition Deep spatiotemporal network Optical flow Facial landmark trajectory Dual-flow fusion
下载PDF
Video expression recognition based on frame-level attention mechanism
8
作者 陈瑞 TONG Ying +1 位作者 ZHANG Yiye XU Bo 《High Technology Letters》 EI CAS 2023年第2期130-139,共10页
Facial expression recognition(FER) in video has attracted the increasing interest and many approaches have been made.The crucial problem of classifying a given video sequence into several basic emotions is how to fuse... Facial expression recognition(FER) in video has attracted the increasing interest and many approaches have been made.The crucial problem of classifying a given video sequence into several basic emotions is how to fuse facial features of individual frames.In this paper, a frame-level attention module is integrated into an improved VGG-based frame work and a lightweight facial expression recognition method is proposed.The proposed network takes a sub video cut from an experimental video sequence as its input and generates a fixed-dimension representation.The VGG-based network with an enhanced branch embeds face images into feature vectors.The frame-level attention module learns weights which are used to adaptively aggregate the feature vectors to form a single discriminative video representation.Finally, a regression module outputs the classification results.The experimental results on CK+and AFEW databases show that the recognition rates of the proposed method can achieve the state-of-the-art performance. 展开更多
关键词 facial expression recognition(FER) video sequence attention mechanism feature extraction enhanced feature VGG network image classification neural network
下载PDF
Hybrid Convolutional Neural Network and Long Short-Term Memory Approach for Facial Expression Recognition
9
作者 M.N.Kavitha A.RajivKannan 《Intelligent Automation & Soft Computing》 SCIE 2023年第1期689-704,共16页
Facial Expression Recognition(FER)has been an importantfield of research for several decades.Extraction of emotional characteristics is crucial to FERs,but is complex to process as they have significant intra-class va... Facial Expression Recognition(FER)has been an importantfield of research for several decades.Extraction of emotional characteristics is crucial to FERs,but is complex to process as they have significant intra-class variances.Facial characteristics have not been completely explored in static pictures.Previous studies used Convolution Neural Networks(CNNs)based on transfer learning and hyperparameter optimizations for static facial emotional recognitions.Particle Swarm Optimizations(PSOs)have also been used for tuning hyperparameters.However,these methods achieve about 92 percent in terms of accuracy.The existing algorithms have issues with FER accuracy and precision.Hence,the overall FER performance is degraded significantly.To address this issue,this work proposes a combination of CNNs and Long Short-Term Memories(LSTMs)called the HCNN-LSTMs(Hybrid CNNs and LSTMs)approach for FERs.The work is evaluated on the benchmark dataset,Facial Expression Recog Image Ver(FERC).Viola-Jones(VJ)algorithms recognize faces from preprocessed images followed by HCNN-LSTMs feature extractions and FER classifications.Further,the success rate of Deep Learning Techniques(DLTs)has increased with hyperparameter tunings like epochs,batch sizes,initial learning rates,regularization parameters,shuffling types,and momentum.This proposed work uses Improved Weight based Whale Optimization Algorithms(IWWOAs)to select near-optimal settings for these parameters using bestfitness values.The experi-mentalfindings demonstrated that the proposed HCNN-LSTMs system outper-forms the existing methods. 展开更多
关键词 Facial expression recognition Gaussianfilter hyperparameter optimization improved weight-based whale optimization algorithm deep learning(DL)
下载PDF
Earthworm Optimization with Improved SqueezeNet Enabled Facial Expression Recognition Model
10
作者 N.Sharmili Saud Yonbawi +5 位作者 Sultan Alahmari E.Laxmi Lydia Mohamad Khairi Ishak Hend Khalid Alkahtani Ayman Aljarbouh Samih M.Mostafa 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期2247-2262,共16页
Facial expression recognition(FER)remains a hot research area among computer vision researchers and still becomes a challenge because of high intraclass variations.Conventional techniques for this problem depend on ha... Facial expression recognition(FER)remains a hot research area among computer vision researchers and still becomes a challenge because of high intraclass variations.Conventional techniques for this problem depend on hand-crafted features,namely,LBP,SIFT,and HOG,along with that a classifier trained on a database of videos or images.Many execute perform well on image datasets captured in a controlled condition;however not perform well in the more challenging dataset,which has partial faces and image variation.Recently,many studies presented an endwise structure for facial expression recognition by utilizing DL methods.Therefore,this study develops an earthworm optimization with an improved SqueezeNet-based FER(EWOISN-FER)model.The presented EWOISN-FER model primarily applies the contrast-limited adaptive histogram equalization(CLAHE)technique as a pre-processing step.In addition,the improved SqueezeNet model is exploited to derive an optimal set of feature vectors,and the hyperparameter tuning process is performed by the stochastic gradient boosting(SGB)model.Finally,EWO with sparse autoencoder(SAE)is employed for the FER process,and the EWO algorithm appropriately chooses the SAE parameters.Awide-ranging experimental analysis is carried out to examine the performance of the proposed model.The experimental outcomes indicate the supremacy of the presented EWOISN-FER technique. 展开更多
关键词 Facial expression recognition deep learning computer vision earthworm optimization hyperparameter optimization
下载PDF
Optimizing Facial Expression Recognition through Effective Preprocessing Techniques
11
作者 Lakshminarayanan Meena Thambusamy Velmurugan 《Journal of Computer and Communications》 2023年第12期86-101,共16页
Analyzing human facial expressions using machine vision systems is indeed a challenging yet fascinating problem in the field of computer vision and artificial intelligence. Facial expressions are a primary means throu... Analyzing human facial expressions using machine vision systems is indeed a challenging yet fascinating problem in the field of computer vision and artificial intelligence. Facial expressions are a primary means through which humans convey emotions, making their automated recognition valuable for various applications including man-computer interaction, affective computing, and psychological research. Pre-processing techniques are applied to every image with the aim of standardizing the images. Frequently used techniques include scaling, blurring, rotating, altering the contour of the image, changing the color to grayscale and normalization. Followed by feature extraction and then the traditional classifiers are applied to infer facial expressions. Increasing the performance of the system is difficult in the typical machine learning approach because feature extraction and classification phases are separate. But in Deep Neural Networks (DNN), the two phases are combined into a single phase. Therefore, the Convolutional Neural Network (CNN) models give better accuracy in Facial Expression Recognition than the traditional classifiers. But still the performance of CNN is hampered by noisy and deviated images in the dataset. This work utilized the preprocessing methods such as resizing, gray-scale conversion and normalization. Also, this research work is motivated by these drawbacks to study the use of image pre-processing techniques to enhance the performance of deep learning methods to implement facial expression recognition. Also, this research aims to recognize emotions using deep learning and show the influences of data pre-processing for further processing of images. The accuracy of each pre-processing methods is compared, then combination between them is analysed and the appropriate preprocessing techniques are identified and implemented to see the variability of accuracies in predicting facial expressions. . 展开更多
关键词 Facial expression recognition Preprocessing Techniques NORMALIZATION Convolutional Neural Network (CNN) Deep Neural Networks (DNN)
下载PDF
Facial expression recognition based on fuzzy-LDA/CCA 被引量:1
12
作者 周晓彦 郑文明 +1 位作者 邹采荣 赵力 《Journal of Southeast University(English Edition)》 EI CAS 2008年第4期428-432,共5页
A novel fuzzy linear discriminant analysis method by the canonical correlation analysis (fuzzy-LDA/CCA)is presented and applied to the facial expression recognition. The fuzzy method is used to evaluate the degree o... A novel fuzzy linear discriminant analysis method by the canonical correlation analysis (fuzzy-LDA/CCA)is presented and applied to the facial expression recognition. The fuzzy method is used to evaluate the degree of the class membership to which each training sample belongs. CCA is then used to establish the relationship between each facial image and the corresponding class membership vector, and the class membership vector of a test image is estimated using this relationship. Moreover, the fuzzy-LDA/CCA method is also generalized to deal with nonlinear discriminant analysis problems via kernel method. The performance of the proposed method is demonstrated using real data. 展开更多
关键词 fuzzy linear discriminant analysis canonical correlation analysis facial expression recognition
下载PDF
Identity-aware convolutional neural networks for facial expression recognition 被引量:13
13
作者 Chongsheng Zhang Pengyou Wang +1 位作者 Ke Chen Joni-Kristian Kamarainen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第4期784-792,共9页
Facial expression recognition is a hot topic in computer vision, but it remains challenging due to the feature inconsistency caused by person-specific 'characteristics of facial expressions. To address such a chal... Facial expression recognition is a hot topic in computer vision, but it remains challenging due to the feature inconsistency caused by person-specific 'characteristics of facial expressions. To address such a challenge, and inspired by the recent success of deep identity network (DeepID-Net) for face identification, this paper proposes a novel deep learning based framework for recognising human expressions with facial images. Compared to the existing deep learning methods, our proposed framework, which is based on multi-scale global images and local facial patches, can significantly achieve a better performance on facial expression recognition. Finally, we verify the effectiveness of our proposed framework through experiments on the public benchmarking datasets JAFFE and extended Cohn-Kanade (CK+). 展开更多
关键词 facial expression recognition deep learning CLASSIFICATION identity-aware
下载PDF
Brain functional changes in facial expression recognition in patients with major depressive disorder before and after antidepressant treatment A functional magnetic resonance imaging study 被引量:3
14
作者 Wenyan Jiang Zhongmin Yint +3 位作者 Yixin Pang Feng Wu Lingtao Kong Ke Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第15期1151-1157,共7页
Functional magnetic resonance imaging was used during emotion recognition to identify changes in functional brain activation in 21 first-episode, treatment-naive major depressive disorder patients before and after ant... Functional magnetic resonance imaging was used during emotion recognition to identify changes in functional brain activation in 21 first-episode, treatment-naive major depressive disorder patients before and after antidepressant treatment. Following escitalopram oxalate treatment, patients exhibited decreased activation in bilateral precentral gyrus, bilateral middle frontal gyrus, left middle temporal gyrus, bilateral postcentral gyrus, left cingulate and right parahippocampal gyrus, and increased activation in right superior frontal gyrus, bilateral superior parietal Iobule and left occipital gyrus during sad facial expression recognition. After antidepressant treatment, patients also exhibited decreased activation in the bilateral middle frontal gyrus, bilateral cingulate and right parahippocampal gyrus, and increased activation in the right inferior frontal gyrus, left fusiform gyrus and right precuneus during happy facial expression recognition. Our experimental findings indicate that the limbic-cortical network might be a key target region for antidepressant treatment in major depressive disorder. 展开更多
关键词 major depressive disorder functional magnetic resonance imaging facial expression recognition ANTIDEPRESSANT neural regeneration
下载PDF
Facial Expression Recognition Based on the Q-shift DT-CWT and Rotation Invariant LBP 被引量:3
15
作者 陈蕾 王加俊 孙兵 《Journal of Donghua University(English Edition)》 EI CAS 2012年第1期71-75,共5页
In this paper, a novel method based on dual-tree complex wavelet transform(DT-CWT) and rotation invariant local binary pattern(LBP) for facial expression recognition is proposed. The quarter sample shift (Q-shift) DT-... In this paper, a novel method based on dual-tree complex wavelet transform(DT-CWT) and rotation invariant local binary pattern(LBP) for facial expression recognition is proposed. The quarter sample shift (Q-shift) DT-CWT can provide a group delay of 1/4 of a sample period, and satisfy the usual 2-band filter bank constraints of no aliasing and perfect reconstruction. To resolve illumination variation in expression verification, low-frequency coefficients produced by DT-CWT are set zeroes, high-frequency coefficients are used for reconstructing the image, and basic LBP histogram is mapped on the reconstructed image by means of histogram specification. LBP is capable of encoding texture and shape information of the preprocessed images. The histogram graphs built from multi-scale rotation invariant LBPs are combined to serve as feature for further recognition. Template matching is adopted to classify facial expressions for its simplicity. The experimental results show that the proposed approach has good performance in efficiency and accuracy. 展开更多
关键词 facial expression recognition dual-tree complex wavelet transform (DT-CWT) local binary pattern(LBP) HISTOGRAM similarity measure
下载PDF
Facial Expression Recognition Using Enhanced Convolution Neural Network with Attention Mechanism 被引量:2
16
作者 K.Prabhu S.SathishKumar +2 位作者 M.Sivachitra S.Dineshkumar P.Sathiyabama 《Computer Systems Science & Engineering》 SCIE EI 2022年第4期415-426,共12页
Facial Expression Recognition(FER)has been an interesting area of research in places where there is human-computer interaction.Human psychol-ogy,emotions and behaviors can be analyzed in FER.Classifiers used in FER hav... Facial Expression Recognition(FER)has been an interesting area of research in places where there is human-computer interaction.Human psychol-ogy,emotions and behaviors can be analyzed in FER.Classifiers used in FER have been perfect on normal faces but have been found to be constrained in occluded faces.Recently,Deep Learning Techniques(DLT)have gained popular-ity in applications of real-world problems including recognition of human emo-tions.The human face reflects emotional states and human intentions.An expression is the most natural and powerful way of communicating non-verbally.Systems which form communications between the two are termed Human Machine Interaction(HMI)systems.FER can improve HMI systems as human expressions convey useful information to an observer.This paper proposes a FER scheme called EECNN(Enhanced Convolution Neural Network with Atten-tion mechanism)to recognize seven types of human emotions with satisfying results in its experiments.Proposed EECNN achieved 89.8%accuracy in classi-fying the images. 展开更多
关键词 Facial expression recognition linear discriminant analysis animal migration optimization regions of interest enhanced convolution neural network with attention mechanism
下载PDF
Person-independent expression recognition based on person-similarity weighted expression feature 被引量:1
17
作者 Huachun Tan Yujin Zhang +2 位作者 Hao Chen Yanan Zhao Wuhong Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第1期118-126,共9页
A new method to extract person-independent expression feature based on higher-order singular value decomposition (HOSVD) is proposed for facial expression recognition. Based on the assumption that similar persons ha... A new method to extract person-independent expression feature based on higher-order singular value decomposition (HOSVD) is proposed for facial expression recognition. Based on the assumption that similar persons have similar facial expression appearance and shape, the person-similarity weighted expression feature is proposed to estimate the expression feature of test persons. As a result, the estimated expression feature can reduce the influence of individuals caused by insufficient training data, and hence become less person-dependent. The proposed method is tested on Cohn-Kanade facial expression database and Japanese female facial expression (JAFFE) database. Person-independent experimental results show the superiority of the proposed method over the existing methods. 展开更多
关键词 facial expression recognition person-independent ex-pression feature higher-order singular value decomposition feature estimation.
下载PDF
Facial expression recognition using threestage support vector machines 被引量:1
18
作者 Issam Dagher Elio Dahdah Morshed Al Shakik 《Visual Computing for Industry,Biomedicine,and Art》 2019年第1期236-244,共9页
Herein,a three-stage support vector machine(SVM)for facial expression recognition is proposed.The first stage comprises 21 SVMs,which are all the binary combinations of seven expressions.If one expression is dominant,... Herein,a three-stage support vector machine(SVM)for facial expression recognition is proposed.The first stage comprises 21 SVMs,which are all the binary combinations of seven expressions.If one expression is dominant,then the first stage will suffice;if two are dominant,then the second stage is used;and,if three are dominant,the third stage is used.These multilevel stages help reduce the possibility of experiencing an error as much as possible.Different image preprocessing stages are used to ensure that the features attained from the face detected have a meaningful and proper contribution to the classification stage.Facial expressions are created as a result of muscle movements on the face.These subtle movements are detected by the histogram-oriented gradient feature,because it is sensitive to the shapes of objects.The features attained are then used to train the three-stage SVM.Two different validation methods were used:the leave-one-out and K-fold tests.Experimental results on three databases(Japanese Female Facial Expression,Extended Cohn-Kanade Dataset,and Radboud Faces Database)show that the proposed system is competitive and has better performance compared with other works. 展开更多
关键词 Facial expression recognition Support vector machine Histogram of oriented gradients Viola-Jones VALIDATION
下载PDF
Label distribution expression recognition algorithm based on asymptotic truth value
19
作者 HUANG Hao GE Hongwei 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2021年第3期295-303,共9页
Ambiguous expression is a common phenomenon in facial expression recognition(FER).Because of the existence of ambiguous expression,the effect of FER is severely limited.The reason maybe that the single label of the da... Ambiguous expression is a common phenomenon in facial expression recognition(FER).Because of the existence of ambiguous expression,the effect of FER is severely limited.The reason maybe that the single label of the data cannot effectively describe complex emotional intentions which are vital in FER.Label distribution learning contains more information and is a possible way to solve this problem.To apply label distribution learning on FER,a label distribution expression recognition algorithm based on asymptotic truth value is proposed.Under the premise of not incorporating extraneous quantitative information,the original information of database is fully used to complete the generation and utilization of label distribution.Firstly,in training part,single label learning is used to collect the mean value of the overall distribution of data.Then,the true value of data label is approached gradually on the granularity of data batch.Finally,the whole network model is retrained using the generated label distribution data.Experimental results show that this method can improve the accuracy of the network model obviously,and has certain competitiveness compared with the advanced algorithms. 展开更多
关键词 facial expression recognition(FER) label distributed learning label smoothing ambiguous expression
下载PDF
Facial Expression Recognition by Split Rectangle Based Adaboost
20
作者 Yong-hee HONG Young-joon HAN Hern-soo HAHN 《Journal of Measurement Science and Instrumentation》 CAS 2011年第1期17-20,共4页
The facial expression recognition systn using the Ariaboost based on the Split Rectangle feature is proposed in this paper. This system provides more various featmes in increasing speed and accuracy than the Haarolike... The facial expression recognition systn using the Ariaboost based on the Split Rectangle feature is proposed in this paper. This system provides more various featmes in increasing speed and accuracy than the Haarolike featrue of Viola, which is commonly used for the Adaboost training algorithm. The Split Rectangle feature uses the nmsk-like shape composed with 2 independent rectangles, instead of using mask-like shape of Haar-like feature, which is composed of 2 --4 adhered rectangles of Viola. Split Rectangle feature has less di- verged operation than the Haar-like feaze. It also requires less oper- ation because the stun of pixels requires ordy two rectangles. Split Rectangle feature provides various and fast features to the Adaboost, which produrces the strong classifier with increased accuracy and speed. In the experiment, the system had 5.92 ms performance speed and 84 %--94 % accuracy by leaming 5 facial expressions, neutral, happiness, sadness, anger and surprise with the use of the Adaboost based on the Split Rectangle feature. 展开更多
关键词 split rectangle feature Haar-like discrete adaboost facial expression recognition pattern recognition
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部