期刊文献+
共找到6,794篇文章
< 1 2 250 >
每页显示 20 50 100
Genetic mapping and expressivity of a wheat multi-pistil gene in mutant 12TP 被引量:1
1
作者 ZHU Xin-xin NI Yong-jing +3 位作者 HE Rui-shi JIANG Yu-mei LI Qiao-yun NIU Ji-shan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2019年第3期532-538,共7页
We identified a wheat(Triticum aestivum L.) multi-pistil mutant from an F_2 breeding population in 2012, named 12 TP(three pistils in one floret). Genetic analysis showed that one dominant gene locus controlled the mu... We identified a wheat(Triticum aestivum L.) multi-pistil mutant from an F_2 breeding population in 2012, named 12 TP(three pistils in one floret). Genetic analysis showed that one dominant gene locus controlled the multi-pistil trait. Using homozygous normal and multi-pistil lines(near-isogenic lines; NILs) derived from the original mutant 12 TP, a simple sequence repeat(SSR) marker assay located the 12 TP locus on chromosome arm 2 DL. Four SSR markers were linked to 12 TP and their order was Xcfd233→Xcfd62-12 TP→Xwmc41→Xcfd168 at 15.85, 10.47, 2.89, and 10.37 cM, respectively. The average genetic expressivity of the trait ‘three pistils in one floret' was more than 98% in seven homozygous 12 TP lines; however, the average genetic expressivity in heterozygous F_1 plants was about 49%. Thus, the 12 TP is a semi-dominant gene locus, which differ from all previously reported multi-pistil mutants. Mutant 12 TP is a new useful germplasm for study of wheat floral development and for breeding of high yield wheat. 展开更多
关键词 WHEAT multi-pistil MUTANT expressivity MAPPING
下载PDF
基于PCIE的多嵌入式人工智能处理器低延迟数据交换技术
2
作者 魏璇 温凯林 +3 位作者 李斌 刘淑涛 褚洁 蔡觉平 《电子科技》 2024年第5期32-37,46,共7页
针对多嵌入式人工智能(Artificial Intelligence,AI)处理器板卡之间的任务调度和数据交换冲突以及提高多板卡堆叠扩展时的可靠性和运行效率问题,文中提出了一种虫洞交换结构多嵌入式人工智能处理器高速数据交换技术和数据帧结构的解决... 针对多嵌入式人工智能(Artificial Intelligence,AI)处理器板卡之间的任务调度和数据交换冲突以及提高多板卡堆叠扩展时的可靠性和运行效率问题,文中提出了一种虫洞交换结构多嵌入式人工智能处理器高速数据交换技术和数据帧结构的解决方法。该方法基于PCIE(PCI Express)高速数据接口,将数据以数据单元的形式进行信息传递,并设计多重权重决策算法避免数据传输中的冲突,实现任务的并发多线程处理。搭建FPGA(Field Programmable Gate Array)平台进行设计和测试,结果表明PCIE的传输带宽利用效率达到了85%以上,数据交换延迟小于20μs,系统中断任务响应平均最大延迟时间为8.775μs。该技术适用于多处理器协同的高速交换电路,可扩展至混合PCIE和RapidIO交换电路结构。 展开更多
关键词 嵌入式人工智能处理器 数据交换 外围组件互连快速 PCI Express 交换开关 虫洞技术 数据仲裁 多重权重决策
下载PDF
Astrocytic endothelin-1 overexpression impairs learning and memory ability in ischemic stroke via altered hippocampal neurogenesis and lipid metabolism 被引量:2
3
作者 Jie Li Wen Jiang +9 位作者 Yuefang Cai Zhenqiu Ning Yingying Zhou Chengyi Wang Sookja Ki Chung Yan Huang Jingbo Sun Minzhen Deng Lihua Zhou Xiao Cheng 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期650-656,共7页
Vascular etiology is the second most prevalent cause of cognitive impairment globally.Endothelin-1,which is produced and secreted by endothelial cells and astrocytes,is implicated in the pathogenesis of stroke.However... Vascular etiology is the second most prevalent cause of cognitive impairment globally.Endothelin-1,which is produced and secreted by endothelial cells and astrocytes,is implicated in the pathogenesis of stroke.However,the way in which changes in astrocytic endothelin-1 lead to poststroke cognitive deficits following transient middle cerebral artery occlusion is not well understood.Here,using mice in which astrocytic endothelin-1 was overexpressed,we found that the selective overexpression of endothelin-1 by astrocytic cells led to ischemic stroke-related dementia(1 hour of ischemia;7 days,28 days,or 3 months of reperfusion).We also revealed that astrocytic endothelin-1 overexpression contributed to the role of neural stem cell proliferation but impaired neurogenesis in the dentate gyrus of the hippocampus after middle cerebral artery occlusion.Comprehensive proteome profiles and western blot analysis confirmed that levels of glial fibrillary acidic protein and peroxiredoxin 6,which were differentially expressed in the brain,were significantly increased in mice with astrocytic endothelin-1 overexpression in comparison with wild-type mice 28 days after ischemic stroke.Moreover,the levels of the enriched differentially expressed proteins were closely related to lipid metabolism,as indicated by Kyoto Encyclopedia of Genes and Genomes pathway analysis.Liquid chromatography-mass spectrometry nontargeted metabolite profiling of brain tissues showed that astrocytic endothelin-1 overexpression altered lipid metabolism products such as glycerol phosphatidylcholine,sphingomyelin,and phosphatidic acid.Overall,this study demonstrates that astrocytic endothelin-1 overexpression can impair hippocampal neurogenesis and that it is correlated with lipid metabolism in poststroke cognitive dysfunction. 展开更多
关键词 astrocytic endothelin-1 dentate gyrus differentially expressed proteins HIPPOCAMPUS ischemic stroke learning and memory deficits lipid metabolism neural stem cells NEUROGENESIS proliferation
下载PDF
Analysis and Characterization of the GABA Transaminase and Succinate Semialdehyde Dehydrogenase Genes in the Microalga Isochrysis zhanjiangensis in Response to Abiotic Stresses
4
作者 TIAN Jiaojiao ZHANG Lin +7 位作者 LU Xinyue YE Lingzhi WU Yuanyuan CHEN Deshui CAO Jiayi JIANG Jiaxin XU Jilin YAN Xiaojun 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第3期775-785,共11页
Gamma-aminobutyric acid(GABA),widely existing in different organisms,is rapidly accumulated in plants in response to environmental stresses.The main biosynthesis and degradation pathways of GABA constitute the GABA sh... Gamma-aminobutyric acid(GABA),widely existing in different organisms,is rapidly accumulated in plants in response to environmental stresses.The main biosynthesis and degradation pathways of GABA constitute the GABA shunt,which is tied to the tricarboxylic acid(TCA)cycle.GABA transaminase(GABA-T)and succinate semialdehyde dehydrogenase(SSADH)are two essential enzymes for the GABA degradation pathway.While there are abundant studies on GABA shunt in higher plants at the physiological and genetic levels,research on its role in microalgae remains limited.This study aimed at exploring the function of GABA-T and SSADH genes in Isochrysis zhanjiangensis,an important diet microalga,under different stresses.We cloned two GABA-T genes,IzGABA-T1 and IzGABA-T2,and one SSADH gene IzSSADH from Isochrysis zhanjiangensis and conducted heterologous expression experiments.The results showed that the overexpression of IzGABA-T1 or IzGABA-T2 enhanced the survival rates of yeast transformants under heat or NaCl stress,while the overexpression of IzSSADH improved yeast tolerance to NaCl stress but had no obvious effect on heat stress.Additionally,the results of quantitative real-time polymerase chain reaction(qPCR)showed that IzGABA-T1 transcription increased in the HT(salinity 25,35℃)and LS(salinity 15,25℃)groups.At 24 h,the IzGABA-T2 transcriptions increased in the HT,LS,and HS(salinity 35,25℃)groups,but their transcription levels decreased in all groups at 48 h.IzSSADH transcription increased in the LS group.These results suggest that IzGABA-T1,IzGABA-T2,and IzSSADH are associated with temperature and salinity stresses and possess a certain preference for different stresses. 展开更多
关键词 abiotic stress GABA heterologous expression Isochrysis zhanjiangensis TRANSCRIPTION
下载PDF
Effects of pyraclostrobin on growth,oxidative stress,and gene expression in relation to stress and ATP-binding cassette transporters in Tetrahymena thermophila
5
作者 Yang LIU Jiale ZHANG +4 位作者 Peng XIAO Xin LIU Yisifu MA Jing ZHANG Bangjun ZHANG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第1期150-162,共13页
Pyraclostrobin(PYR),a widely used fungicide,has negative effects on fish and algae,but its toxicity in protozoa remains unclear.In this study,the effects of PYR on the growth,oxidative stress,and gene expression relat... Pyraclostrobin(PYR),a widely used fungicide,has negative effects on fish and algae,but its toxicity in protozoa remains unclear.In this study,the effects of PYR on the growth,oxidative stress,and gene expression related to stress and ATP-binding cassette(ABC)transporters in Tetrahymena thermophila were investigated.The result showed that the 96-h IC_(50)of PYR against T.thermophila was 17.2 mg/L.Moreover,PYR inhibited the growth of T.thermophila in concentration-or time-dependent manner.A morphological study revealed that the shape and size of T.thermophila changed,and damage of cell membrane surface was observed by scanning electron microscopy after 96 h of PYR exposure.The activities of superoxide dismutase(SOD)and catalase(CAT)increased throughout the experiment.In contrast,the glutathione(GSH)content was increased at 24 h and 48 h of exposure and decreased at 96 h.Moreover,a significant increase in malondialdehyde(MDA)level was observed in T.thermophila after96 h of exposure.Furthermore,PYR upregulated the HSP703,HSP705,GPx2,and ABAC15 gene expression in the 0.1–5-mg/L groups and downregulated the HSP704,HSP90,TGR,and ABCC52 mRNA levels at 96 h of exposure.These results suggest that PYR may exert adverse effects on T.thermophila by inducing oxidative stress and changing the gene expression related to ABC transporters and stress,which may enrich the understanding of the toxicity mechanism of PYR in aquatic organisms and provide reference data for aquatic ecological risk assessments. 展开更多
关键词 PYRACLOSTROBIN Tetrahymena thermophila GROWTH oxidative stress gene expression
下载PDF
Transcriptomic and metabolomic analysis provides insights into lignin biosynthesis and accumulation and differences in lodging resistance in hybrid wheat
6
作者 Weibing Yang Shengquan Zhang +7 位作者 Qiling Hou Jiangang Gao Hanxia Wang Xianchao Chen Xiangzheng Liao Fengting Zhang Changping Zhao Zhilie Qin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第4期1105-1117,共13页
The use of hybrid wheat is one way to improve the yield in the future.However,greater plant heights increase lodging risk to some extent.In this study,two hybrid combinations with differences in lodging resistance wer... The use of hybrid wheat is one way to improve the yield in the future.However,greater plant heights increase lodging risk to some extent.In this study,two hybrid combinations with differences in lodging resistance were used to analyze the stem-related traits during the filling stage,and to investigate the mechanism of the difference in lodging resistance by analyzing lignin synthesis of the basal second internode(BSI).The stem-related traits such as the breaking strength,stem pole substantial degree(SPSD),and rind penetration strength(RPS),as well as the lignin content of the lodging-resistant combination(LRC),were significantly higher than those of the lodgingsensitive combination(LSC).The phenylpropanoid biosynthesis pathway was significantly and simultaneously enriched according to the transcriptomics and metabolomics analysis at the later filling stage.A total of 35 critical regulatory genes involved in the phenylpropanoid pathway were identified.Moreover,42%of the identified genes were significantly and differentially expressed at the later grain-filling stage between the two combinations,among which more than 80%were strongly up-regulated at that stage in the LRC compared with LSC.On the contrary,the LRC displayed lower contents of lignin intermediate metabolites than the LSC.These results suggested that the key to the lodging resistance formation of LRC is largely the higher lignin synthesis at the later grain-filling stage.Finally,breeding strategies for synergistically improving plant height and lodging resistance of hybrid wheat were put forward by comparing the LRC with the conventional wheat applied in large areas. 展开更多
关键词 gene expression lignin synthesis lodging-resistance hybrid wheat
下载PDF
A 48-bp deletion upstream of LIGULELESS 1 alters rice panicle architecture
7
作者 Linhua Wu Min Hu +6 位作者 Shuwei Lyu Wenfeng Chen Hang Yu Qing Liu Wei He Chen Li Zuofeng Zhu 《The Crop Journal》 SCIE CSCD 2024年第2期354-363,共10页
Panicle architecture is an agronomic determinant of crop yield and a target for cereal crop improvement.To investigate its molecular mechanisms in rice,we performed map-based cloning and characterization of OPEN PANIC... Panicle architecture is an agronomic determinant of crop yield and a target for cereal crop improvement.To investigate its molecular mechanisms in rice,we performed map-based cloning and characterization of OPEN PANICLE 1(OP1),a gain-of-function allele of LIGULELESS 1(LG1),controlling the spread-panicle phenotype.This allele results from a 48-bp deletion in the LG1 upstream region and promotes pulvinus development at the base of the primary branch.Increased OP1 expression and altered panicle phenotype in chimeric transgenic plants and upstream-region knockout mutants indicated that the deletion regulates spread-panicle architecture in the mutant spread panicle 1(sp1).Knocking out BRASSINOSTEROID UPREGULATED1(BU1)gene in the background of OP1 complementary plants resulted in compact panicles,suggesting OP1 may regulate inflorescence architecture via the brassinosteroid signaling pathway.We regard that manipulating the upstream regulatory region of OP1 or genes involved in BR signal pathway could be an efficient way to improve rice inflorescence architecture. 展开更多
关键词 Upstream region Panicle architecture Gene expression BR Rice
下载PDF
Single-cell manipulation by two-dimensional micropatterning
8
作者 Xuehe Ma Haimei Zhang +7 位作者 Shiyu Deng Qiushuo Sun Qingsong Hu Yuhang Pan Fen Hu Imshik Lee Fulin Xing Leiting Pan 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第1期45-59,共15页
Cells are highly sensitive to their geometrical and mechanical microenvironment that directly regulate cell shape,cytoskeleton and organelle,as well as the nucleus morphology and genetic expression.The emerging two-di... Cells are highly sensitive to their geometrical and mechanical microenvironment that directly regulate cell shape,cytoskeleton and organelle,as well as the nucleus morphology and genetic expression.The emerging two-dimensional micropatterning techniques offer powerful tools to construct controllable and well-organized microenvironment for single-cell level investigations with qualitative analysis,cellular standardization,and in vivo environment mimicking.Here,we provide an overview of the basic principle and characteristics of the two most widely-used micropatterning techniques,including photolithographic micropatterning and soft lithography micropatterning.Moreover,we summarize the application of micropatterning technique in controlling cytoskeleton,cell migration,nucleus and gene expression,as well as intercellular communication. 展开更多
关键词 Two-dimensional micropatterning CYTOSKELETON cell migration extracellular matrix intercellular communication gene expression
下载PDF
Salinity Acclimation Induces Reduced Energy Metabolism,Osmotic Pressure Regulation and Transcriptional Reprogramming in Hypotrichida Ciliate Gastrostyla setifera
9
作者 JI Xin BI Luping +3 位作者 ZOU Songbao LI Wenlu JI Daode ZHANG Qianqian 《Journal of Ocean University of China》 CAS CSCD 2024年第2期539-549,共11页
Coastal and estuarine protists are frequently exposed to salinity undulation.While the tolerance and stress responses of microalgae to salinity have been extensively studied,there have been scarce studies on the physi... Coastal and estuarine protists are frequently exposed to salinity undulation.While the tolerance and stress responses of microalgae to salinity have been extensively studied,there have been scarce studies on the physiological response of heterotrophic protists to salinity stressing.In this study,we investigated the physiological response of the heterotrophic ciliate Gastrostyla setifera to a salinity of 3,via a transcriptomic approach.The first transcriptome of genus Gastrostyla was obtained utilizing a group of manually isolated ciliate individuals(cells)and RNA-seq technique.The completeness of the transcriptome was verified.Differentially expressed gene(DEG)analysis was performed among the transcriptomes of G.setifera acclimated in saline water(salinity 3)and those cultured in fresh water.The results demonstrated a significant alternation in gene transcription,in which the ciliate exhibits a transcripttomic acclimation in responding salinity stressing.The up-regulated DEGs were enriched in the pathways of cytoskeleton proteins,membrane trafficking,protein kinases and protein phosphatases.These may represent enhanced functions of ion transport,stress response and cell protections.Pathways involved in energy metabolism and biosynthesis were markedly down-regulated,reflecting decreased cell activity.Particularly,we detected significantly down-regulated genes involved in several pathways of amino acid catabolism,which may lead to accumulation of amino acids in the ciliate cell.Amino acid could act as compatible solutes in the cytoplasm to maintain the osmotic balance in saline water.Overall,this work is an initial exploration to the molecular basis of the heterotrophic protist responding to salinity stressing.The result sheds light on the mechanisms of enhancement of cell protection,reduction of cell activity,and osmotic pressure regulation in ciliates acclimated to salinity. 展开更多
关键词 salinity stress heterotrophic protist CILIATE Gastrostyla setifera transcriptome differentially expressed gene
下载PDF
Transcriptome analysis reveals immune-related genes in tissues of Vibrio anguillarum-infected turbot Scophthalmus maximus
10
作者 Yuting SONG Maqsood Ahmed SOOMRO +1 位作者 Xianzhi DONG Guobin HU 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第1期332-344,共13页
Turbot Scophthalmus maximus is an important mariculture fish species with high economic value.However,the bacterial diseases caused by Vibrio anguillarum infection bring huge economic losses to the turbot aquaculture ... Turbot Scophthalmus maximus is an important mariculture fish species with high economic value.However,the bacterial diseases caused by Vibrio anguillarum infection bring huge economic losses to the turbot aquaculture industry.To understand the immune response of the turbot against V.anguillarum infection and to explore novel immune-related genes,the transcriptome analysis of turbot spleen and gills were conducted after V.anguillarum infection.Differentially expressed genes(DEGs)were identified in spleen and gill of the turbot amounted to 17261 and 16436,respectively.A large number of immunerelated DEGs were enriched in cytokine-cytokine receptor interaction signaling pathway,and the others by the kyoto encyclopedia of genes and genomes(KEGG)enrichment.The gene ontology(GO)classification analysis revealed that V.anguillarum infection had the greatest effect on biological processes and cellular components.Twelve immune-related DEGs were identified in the spleen(cstl.1,egfl6,lamb21,v2rx4,calcr,and gpr78a)and gills(ghra,sh3gl2a,cst12,inhbaa,cxcl8,and il-1b)by heat map.The proteinprotein interaction(PPI)networks were constructed to analyze the immune mechanism.The results demonstrate that the maturation and antigen processing of major histocompatibility complex(MHC)class II molecule,and calcitonin-or adrenomedullin-regulated physiological activity were important events in the immunity of turbot against V.anguillarum infection.In the gills,the protein interactions in TGF-βsignaling pathway,production of inflammatory factors,and endocytosis regulation were most significant.Our research laid a foundation for discovering novel immune-related genes and enriching the knowledge of immune mechanisms of turbot against V.anguillarum infection. 展开更多
关键词 Scophthalmus maximus Vibrio anguillarum TRANSCRIPTOME differentially expressed genes immune mechanism
下载PDF
A growth-regulating factor 7(GRF7)-mediated gene regulatory network promotes leaf growth and expansion in sugarcane
11
作者 Qiaoyu Wang Yihan Li +5 位作者 Dadong Lin Xiaoxi Feng Yongjun Wang Tianyou Wang Hongyan Ding Jisen Zhang 《The Crop Journal》 SCIE CSCD 2024年第2期422-431,共10页
Knowledge of the function of growth-regulating factors(GRFs)in sugarcane(Saccharum officinarum and S.spontaneum)growth and development could assist breeders in selecting desirable plant architectures.However,limited i... Knowledge of the function of growth-regulating factors(GRFs)in sugarcane(Saccharum officinarum and S.spontaneum)growth and development could assist breeders in selecting desirable plant architectures.However,limited information about GRFs is available in Saccharum due to their polyploidy.In this study,22 GRFs were identified in the two species and their conserved domains,gene structures,chromosome location,and synteny were characterized.GRF7 expression varied among tissues and responded to diurnal rhythm.SsGRF7-YFP was localized preferentially in the nucleus and appears to act as a transcriptional cofactor.SsGRF7 positively regulated the size and length of rice leaves,possibly by regulating cell size and plant hormones.Of seven potential transcription factors binding to the SsGRF7 promoter in S.spontaneum,four showed positive expression patterns,and two showed negative expression patterns relative to SsGRF7. 展开更多
关键词 Expression analysis Growth-regulating factor Leaf development SUGARCANE Transcription factors
下载PDF
Global analysis of basic leucine zipper transcription factors in trifoliate orange and the function identification of PtbZIP49 in salt tolerance
12
作者 Yuanyuan Xu Qiuling Hui +5 位作者 Meng Li Hongxian Peng Yizhong He Changpin Chun Liangzhi Peng Xingzheng Fu 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第1期115-130,共16页
As one of the most widely distributed and highly conserved transcription factors in eukaryotes,basic leucine zipper proteins(bZIPs)are involved in a variety of biological processes in plants,but they are largely unkno... As one of the most widely distributed and highly conserved transcription factors in eukaryotes,basic leucine zipper proteins(bZIPs)are involved in a variety of biological processes in plants,but they are largely unknown in citrus.In this study,56 bZIP family members were identified genome-wide from an important citrus rootstock,namely trifoliate orange(Poncirus trifoliata L.Raf.),and these putative bZIPs were named PtbZIP1—PtbZIP56.All PtbZIPs were classified into 13 subgroups by phylogenetic comparison with Arabidopsis thaliana bZIPs(AtbZIPs),and they were randomly distributed on nine known(50 genes)chromosomes and one unknown(6 genes)chromosome.Sequence analysis revealed the detailed characteristics of PtPZIPs,including their amino acid length,isoelectric point(pI),molecular weight(MW),predicted subcellular localization,gene structure,and conserved motifs.Prediction of promoter elements suggested the presence of drought,low-temperature,wound,and defense and stress responsive elements,as well as multiple hormone-responsive cis-acting elements.Spatiotemporal expression analysis showed the transcriptional patterns of PtbZIPs in different tissues and under dehydration,high salt,ABA,and IAA treatments.In addition,21 PtbZIPs were predicted to have direct or indirect protein—protein interactions.Among these,PtbZIP49 was experimentally proven to interact with PtbZIP1 or PtbZIP11 by using a yeast two-hybrid assay and bimolecular fluorescence complementation(BiFC).Subcellular localization analysis further revealed that PtbZIP1,PtbZIP11,and PtbZIP49 were localized in the nucleus.Moreover,PtbZIP49 was functionally identified as having an important role in salt stress via ectopic expression in A.thaliana and silenced in trifoliate orange using virus-induced gene silencing(VIGS).This study provided comprehensive information on PtbZIP transcription factors in citrus and highlights their potential functions in abiotic stress. 展开更多
关键词 BZIP CITRUS Trifoliate orange Abiotic stress Expression pattern
下载PDF
Metabolic profiles and morphological characteristics of leaf tips among different sweet potato(Ipomoea batatas Lam.)varieties
13
作者 Wenqing Tan Xinbo Guo +7 位作者 Zhangying Wang Rong Zhang Chaochen Tang Bingzhi Jiang Ruixue Jia Yuanyuan Deng Shaohai Yang Jingyi Chen 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第2期494-510,共17页
Sweet potato leaf tips have high nutritional value,and exploring the differences in the metabolic profiles of leaf tips among different sweet potato varieties can provide information to improve their qualities.In this... Sweet potato leaf tips have high nutritional value,and exploring the differences in the metabolic profiles of leaf tips among different sweet potato varieties can provide information to improve their qualities.In this study,a UPLC-Q-Exactive Orbitrap/MS-based untargeted metabolomics method was used to evaluate the metabolites in leaf tips of 32 sweet potato varieties.Three varieties with distinct overall metabolic profiles(A01,A02,and A03),two varieties with distinct profiles of phenolic acids(A20 and A18),and three varieties with distinct profiles of flavonoids(A05,A12,and A16)were identified.In addition,a total of 163 and 29 differentially expressed metabolites correlated with the color and leaf shape of sweet potato leaf tips,respectively,were identified through morphological characterization.Group comparison analysis of the phenotypic traits and a metabolite-phenotypic trait correlation analysis indicated that the color differences of sweet potato leaf tips were markedly associated with flavonoids.Also,the level of polyphenols was correlated with the leaf shape of sweet potato leaf tips,with lobed leaf types having higher levels of polyphenols than the entire leaf types.The findings on the metabolic profiles and differentially expressed metabolites associated with the morphology of sweet potato leaf tips can provide useful information for breeding sweet potato varieties with higher nutritional value. 展开更多
关键词 sweet potato leaf tips phenotypic traits metabolic profile differentially expressed metabolites POLYPHENOLS
下载PDF
Advances in DNA methylation and its role in cytoplasmic male sterility in higher plants
14
作者 Atiqur Rahman Hasan Sofiur Rahman +9 位作者 Shakil Uddin Naima Sultana Shirin Akhter Ujjal Kumar Nath Shamsun Nahar Begum Mazadul Islam Afroz Naznin Nurul Amin Sharif Ahmed Akbar Hossain 《Journal of Integrative Agriculture》 SCIE CSCD 2024年第1期1-19,共19页
The impact of epigenetic modifications like DNA methylation on plant phenotypes has expanded the possibilities for crop development.DNA methylation plays a part in the regulation of both the chromatin structure and ge... The impact of epigenetic modifications like DNA methylation on plant phenotypes has expanded the possibilities for crop development.DNA methylation plays a part in the regulation of both the chromatin structure and gene expression,and the enzyme involved,DNA methyltransferase,executes the methylation process within the plant genome.By regulating crucial biological pathways,epigenetic changes actively contribute to the creation of the phenotype.Therefore,epigenome editing may assist in overcoming some of the drawbacks of genome editing,which can have minor off-target consequences and merely facilitate the loss of a gene’s function.These drawbacks include gene knockout,which can have such off-target effects.This review provides examples of several molecular characteristics of DNA methylation,as well as some plant physiological processes that are impacted by these epigenetic changes in the plants.We also discuss how DNA alterations might be used to improve crops and meet the demands of sustainable and environmentally-friendly farming. 展开更多
关键词 DNA methylation EPIGENETICS CMS male sterility chromatin architecture gene expression higher plants
下载PDF
Trehalose:A sugar molecule involved in temperature stress management in plants
15
作者 Ali Raza Savita Bhardwaj +7 位作者 Md Atikur Rahman Pedro García-Caparrós Madiha Habib Faisal Saeed Sidra Charagh Christine H.Foyer Kadambot H.M.Siddique Rajeev K.Varshney 《The Crop Journal》 SCIE CSCD 2024年第1期1-16,共16页
Trehalose(Tre)is a non-reducing disaccharide found in many species,including bacteria,fungi,invertebrates,yeast,and even plants,where it acts as an osmoprotectant,energy source,or protein/membrane protector.Despite re... Trehalose(Tre)is a non-reducing disaccharide found in many species,including bacteria,fungi,invertebrates,yeast,and even plants,where it acts as an osmoprotectant,energy source,or protein/membrane protector.Despite relatively small amounts in plants,Tre concentrations increase following exposure to abiotic stressors.Trehalose-6-phosphate,a precursor of Tre,has regulatory functions in sugar metabolism,crop production,and stress tolerance.Among the various abiotic stresses,temperature extremes(heat or cold stress)are anticipated to impact crop production worldwide due to ongoing climate changes.Applying small amounts of Tre can mitigate negative physiological,metabolic,and molecular responses triggered by temperature stress.Trehalose also interacts with other sugars,osmoprotectants,amino acids,and phytohormones to regulate metabolic reprogramming that underpins temperature stress adaptation.Transformed plants expressing Tre-synthesis genes accumulate Tre and show improved stress tolerance.Genome-wide studies of Tre-encoding genes suggest roles in plant growth,development,and stress tolerance.This review discusses the functions of Tre in mitigating temperature stress—highlighting genetic engineering approaches to modify Tre metabolism,crosstalk,and interactions with other molecules—and in-silico approaches for identifying novel Tre-encoding genes in diverse plant species.We consider how this knowledge can be used to develop temperature-resilient crops essential for sustainable agriculture. 展开更多
关键词 Abiotic stress Gene expression Genetic engineering OSMOLYTE Trehalose-6-phosphate
下载PDF
Monogenic features of urolithiasis: A comprehensive review
16
作者 Kyo Chul Koo Abdulghafour Halawani +2 位作者 Victor K.F.Wong Dirk Lange Ben H.Chew 《Asian Journal of Urology》 CSCD 2024年第2期169-179,共11页
Objective: Urolithiasis formation has been attributed to environmental and dietary factors. However, evidence is accumulating that genetic background can contribute to urolithiasis formation. Advancements in the ident... Objective: Urolithiasis formation has been attributed to environmental and dietary factors. However, evidence is accumulating that genetic background can contribute to urolithiasis formation. Advancements in the identification of monogenic causes using high-throughput sequencing technologies have shown that urolithiasis has a strong heritable component.Methods: This review describes monogenic factors implicated in a genetic predisposition to urolithiasis. Peer-reviewed journals were evaluated by a PubMed search until July 2023 to summarize disorders associated with monogenic traits, and discuss clinical implications of identification of patients genetically susceptible to urolithiasis formation.Results: Given that more than 80% of urolithiases cases are associated with calcium accumulation, studies have focused mainly on monogenetic contributors to hypercalciuric urolithiases, leading to the identification of receptors, channels, and transporters involved in the regulation of calcium renal tubular reabsorption. Nevertheless, available candidate genes and linkage methods have a low resolution for evaluation of the effects of genetic components versus those of environmental, dietary, and hormonal factors, and genotypes remain undetermined in the majority of urolithiasis formers.Conclusion: The pathophysiology underlying urolithiasis formation is complex and multifactorial, but evidence strongly suggests the existence of numerous monogenic causes of urolithiasis in humans. 展开更多
关键词 Gene Genetic expression Inheritance pattern UROLITHIASIS
下载PDF
GST family genes in jujube actively respond to phytoplasma infection
17
作者 Qipeng Wang Liman Zhang +5 位作者 Chaoling Xue Yao Zhang Xiangrui Meng Zhiguo Liu Mengjun Liu Jin Zhao 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第1期77-90,共14页
Jujube witches’broom(JWB)caused by phytoplasma has a severely negative effect on multiple metabolisms in jujube.The GST gene family in plants participates in the regulation of a variety of biotic and abiotic stresses... Jujube witches’broom(JWB)caused by phytoplasma has a severely negative effect on multiple metabolisms in jujube.The GST gene family in plants participates in the regulation of a variety of biotic and abiotic stresses.This study aims to identify and reveal the changes in the jujube GST gene family in response to phytoplasma infection.Here,70 ZjGSTs were identified in the jujube genome and divided into 8 classes.Among them,the Tau-class,including 44 genes,was the largest.Phylogenetic analysis indicated that Tau-class genes were highly conserved among species,such as Arabidopsis,cotton,chickpea,and rice.Through chromosome location analysis,37.1%of genes were clustered,and 8 of 9 gene clusters were composed of Tau class members.Through RT-PCR,qRT-PCR and enzyme activity detection,the results showed that the expression of half(20/40)of the tested ZjGSTs was inhibited by phytoplasma infection in field and tissue culture conditions,and GST activity was also significantly reduced.In the resistant and susceptible varieties under phytoplasma infection,ZjGSTU49-ZjGSTU54 in the cluster IV showed opposite expression patterns,which may be due to functional divergence during evolution.Some upregulated genes(ZjGSTU45,ZjGSTU49,ZjGSTU59,and ZjGSTU70)might be involved in the process of jujube against JWB.The yeast two-hybrid results showed that all 6 Tauclass proteins tested could form homodimers or heterodimers.Overall,the comprehensive analysis of the jujube GST gene family revealed that ZjGSTs responded actively to phytoplasma infection.Furthermore,some screened genes(ZjGSTU24,ZjGSTU49-52,ZjGSTU70,and ZjDHAR10)will contribute to further functional studies of jujube-phytoplasma interactions. 展开更多
关键词 Chinese jujube GST gene Family PHYTOPLASMA Gene cluster EXPRESSION Protein interaction
下载PDF
Sugarcane transcription factor ScWRKY4 negatively regulates resistance to pathogen infection through the JA signaling pathway
18
作者 Dongjiao Wang Wei Wang +5 位作者 Shoujian Zang Liqian Qin Yanlan Liang Peixia Lin Yachun Su Youxiong Que 《The Crop Journal》 SCIE CSCD 2024年第1期164-176,共13页
WRKY transcription factors,transcriptional regulators unique to plants,play an important role in defense response to pathogen infection.However,the resistance mechanisms of WRKY genes in sugarcane remain unclear.In th... WRKY transcription factors,transcriptional regulators unique to plants,play an important role in defense response to pathogen infection.However,the resistance mechanisms of WRKY genes in sugarcane remain unclear.In the present study,gene ontology(GO)enrichment analysis revealed that WRKY gene family in sugarcane was extensively involved in the response to biotic stress and in defense response.We identified gene ScWRKY4,a classⅡc member of the WRKY gene family,in sugarcane cultivar ROC22.This gene was induced by salicylic acid(SA)and methyl jasmonate(MeJA)stress.Interestingly,expression of ScWRKY4 was down-regulated in smut-resistant sugarcane cultivars but up-regulated in smutsusceptible sugarcane cultivars infected with Sporisorium scitamineum.Moreover,stable overexpression of the ScWRKY4 gene in Nicotiana benthamiana enhanced susceptibility to Fusarium solani var.coeruleum and caused down-regulated expression of immune marker-related genes.Transcriptome analysis indicated suppressed expression of most JAZ genes in the signal transduction pathway.ScWRKY4 interacted with ScJAZ13 to repress its expression.We thus hypothesized that the ScWRKY4 gene was involved in the regulatory network of plant disease resistance,most likely through the JA signaling pathway.The present study depicting the molecular involvement of ScWRKY4 in sugarcane disease resistance lays a foundation for future investigation. 展开更多
关键词 Disease resistance Expression profile Transcriptome analysis WRKY transcription factors
下载PDF
Genome-wide identification and expression profiling of photosystem II(PsbX)gene family in upland cotton(Gossypium hirsutum L.)
19
作者 RAZA Irum PARVEEN Abida +4 位作者 AHMAD Adeel HU Daowu PAN Zhaoe ALI Imran DU Xiongming 《Journal of Cotton Research》 CAS 2024年第1期1-14,共14页
Background Photosystem II(PSII)constitutes an intricate assembly of protein pigments,featuring extrinsic and intrinsic polypeptides within the photosynthetic membrane.The low-molecular-weight transmembrane protein Psb... Background Photosystem II(PSII)constitutes an intricate assembly of protein pigments,featuring extrinsic and intrinsic polypeptides within the photosynthetic membrane.The low-molecular-weight transmembrane protein PsbX has been identified in PSII,which is associated with the oxygen-evolving complex.The expression of PsbX gene protein is regulated by light.PsbX’s central role involves the regulation of PSII,facilitating the binding of quinone molecules to the Qb(PsbA)site,and it additionally plays a crucial role in optimizing the efficiency of photosynthesis.Despite these insights,a comprehensive understanding of the PsbX gene’s functions has remained elusive.Results In this study,we identified ten PsbX genes in Gossypium hirsutum L.The phylogenetic analysis results showed that 40 genes from nine species were classified into one clade.The resulting sequence logos exhibited substantial conservation across the N and C terminals at multiple sites among all Gossypium species.Furthermore,the ortholo-gous/paralogous,Ka/Ks ratio revealed that cotton PsbX genes subjected to positive as well as purifying selection pressure might lead to limited divergence,which resulted in the whole genome and segmental duplication.The expression patterns of GhPsbX genes exhibited variations across specific tissues,as indicated by the analysis.Moreover,the expression of GhPsbX genes could potentially be regulated in response to salt,intense light,and drought stresses.Therefore,GhPsbX genes may play a significant role in the modulation of photosynthesis under adverse abiotic conditions.Conclusion We examined the structure and function of PsbX gene family very first by using comparative genom-ics and systems biology approaches in cotton.It seems that PsbX gene family plays a vital role during the growth and development of cotton under stress conditions.Collectively,the results of this study provide basic information to unveil the molecular and physiological function of PsbX genes of cotton plants. 展开更多
关键词 PHOTOSYSTEM PHYLOGENETIC SYNTENY RNA seq Gene expression Orthologous
下载PDF
Comparative analysis of SIMILAR to RCD ONE(SRO)family from tetraploid cotton species and their diploid progenitors depict their significance in cotton growth and development
20
作者 SHABAN Muhammad TABASSUM Riaz +5 位作者 RANA Iqrar Ahmad ATIF Rana Muhammad AZMAT Muhammad Abubakkar IQBAL Zubair MAJEED Sajid AZHAR Muhammad Tehseen 《Journal of Cotton Research》 CAS 2024年第1期45-57,共13页
Background SRO(Similar to RCD1)genes family is largely recognized for their importance in the growth,develop-ment,and in responding to environmental stresses.However,genome-wide identification and functional character... Background SRO(Similar to RCD1)genes family is largely recognized for their importance in the growth,develop-ment,and in responding to environmental stresses.However,genome-wide identification and functional characteri-zation of SRO genes from cotton species have not been reported so far.Results A total of 36 SRO genes were identified from four cotton species.Phylogenetic analysis divided these genes into three groups with distinct structure.Syntenic and chromosomal distribution analysis indicated uneven distribu-tion of GaSRO,GrSRO,GhSRO,and GbSRO genes on A2,D5 genomes,Gh-At,Gh-Dt,Gb-At,and Gb-Dt subgenomes,respectively.Gene duplication analysis revealed the presence of six duplicated gene pairs among GhSRO genes.In promoter analysis,several elements responsive to the growth,development and hormones were found in GhSRO genes,implying gene induction during cotton growth and development.Several miRNAs responsive to plant growth and abiotic stress were predicted to target 12 GhSRO genes.Organ-specific expression profiling demonstrated the roles of GhSRO genes in one or more tissues.In addition,specific expression pattern of some GhSRO genes dur-ing ovule development depicted their involvement in these developmental processes.Conclusion The data presented in this report laid a foundation for understanding the classification and functions of SRO genes in cotton. 展开更多
关键词 COTTON SRO miRNAs Gene duplications Gene expression Ovule development
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部