Traffic congestion is a growing problem in urban areas all over the world. The transport sector has been in full swing event study on intelligent transportation system for automatic detection. The functionality of aut...Traffic congestion is a growing problem in urban areas all over the world. The transport sector has been in full swing event study on intelligent transportation system for automatic detection. The functionality of automatic incident detection on expressways is a primary objective of advanced traffic management system. In order to save lives and prevent secondary incidents, accurate and prompt incident detection is necessary. This paper presents a methodology that integrates moving average (MA) model with stationary wavelet decomposition for automatic incident detection, in which parameters of layer coefficient are extracted from the difference between the upstream and downstream occupancy. Unlike other wavelet-based method presented before, firstly it smooths the raw data with MA model. Then it uses stationary wavelet to decompose, which can achieve accurate reconstruction of the signal, and does not shift the signal transfer coefficients. Thus, it can detect the incidents more accurately. The threshold to trigger incident alarm is also adjusted according to normal traffic condition with con- gestion. The methodology is validated with real data from Tokyo Expressway ultrasonic sensors. Ex- perimental results show that it is accurate and effective, and that it can differentiate traffic accident from other condition such as recurring traffic congestion.展开更多
The expressway traffc incidents have the characteristics of high harmful, strong destructive and refractory.Incident detection can guarantee smooth operation of the expressway, reduce traffc congestion and avoid secon...The expressway traffc incidents have the characteristics of high harmful, strong destructive and refractory.Incident detection can guarantee smooth operation of the expressway, reduce traffc congestion and avoid secondary accident by informing the accident, detection and treatment timely. In this paper, an incident detection method is proposed using the toll station data that takes into account the traffc ratio at the entrances and crossway in the network. The expressway traffc simulation model is improved and a simulation algorithm is established to describe the movement of the vehicles. A numerical example is experimented on the expressway network of Shandong province. The proposed method can effectively detect the expressway incidents, and dynamically estimate the traffc network states so as to provide advice for the highway management department.展开更多
基金supported by Jiangsu Provincial Government Scholarshipthe National Natural Science Foundation of China(No.51008143)
文摘Traffic congestion is a growing problem in urban areas all over the world. The transport sector has been in full swing event study on intelligent transportation system for automatic detection. The functionality of automatic incident detection on expressways is a primary objective of advanced traffic management system. In order to save lives and prevent secondary incidents, accurate and prompt incident detection is necessary. This paper presents a methodology that integrates moving average (MA) model with stationary wavelet decomposition for automatic incident detection, in which parameters of layer coefficient are extracted from the difference between the upstream and downstream occupancy. Unlike other wavelet-based method presented before, firstly it smooths the raw data with MA model. Then it uses stationary wavelet to decompose, which can achieve accurate reconstruction of the signal, and does not shift the signal transfer coefficients. Thus, it can detect the incidents more accurately. The threshold to trigger incident alarm is also adjusted according to normal traffic condition with con- gestion. The methodology is validated with real data from Tokyo Expressway ultrasonic sensors. Ex- perimental results show that it is accurate and effective, and that it can differentiate traffic accident from other condition such as recurring traffic congestion.
基金Supported by the National Natural Science Foundation of China under Grant Nos.71871130,71471104,71771019,71571109the University Science and Technology Program Funding Projects of Shandong Province under Grant No.J17KA211the Project of Public Security Department of Shandong Province under Grant No.GATHT2015-236
文摘The expressway traffc incidents have the characteristics of high harmful, strong destructive and refractory.Incident detection can guarantee smooth operation of the expressway, reduce traffc congestion and avoid secondary accident by informing the accident, detection and treatment timely. In this paper, an incident detection method is proposed using the toll station data that takes into account the traffc ratio at the entrances and crossway in the network. The expressway traffc simulation model is improved and a simulation algorithm is established to describe the movement of the vehicles. A numerical example is experimented on the expressway network of Shandong province. The proposed method can effectively detect the expressway incidents, and dynamically estimate the traffc network states so as to provide advice for the highway management department.