To find the predual spaces Pα(R^n) of Qα(R^n) is an important motivation in the study of Q spaces. In this article, wavelet methods are used to solve this problem in a constructive way. First, an wavelet tent at...To find the predual spaces Pα(R^n) of Qα(R^n) is an important motivation in the study of Q spaces. In this article, wavelet methods are used to solve this problem in a constructive way. First, an wavelet tent atomic characterization of Pα(Rn) is given, then its usual atomic characterization and Poisson extension characterization are given. Finally, the continuity on Pα of Calderon-Zygmund operators is studied, and the result can be also applied to give the Morrey characterization of Pα(Rn).展开更多
基金supported by NNSF of China No.10001027, 90104004,10471002973 project of China G1999075105+1 种基金the innovation funds of Wuhan Universitythe subject construction funds of Mathematic and Statistic School, Wuhan University.
文摘To find the predual spaces Pα(R^n) of Qα(R^n) is an important motivation in the study of Q spaces. In this article, wavelet methods are used to solve this problem in a constructive way. First, an wavelet tent atomic characterization of Pα(Rn) is given, then its usual atomic characterization and Poisson extension characterization are given. Finally, the continuity on Pα of Calderon-Zygmund operators is studied, and the result can be also applied to give the Morrey characterization of Pα(Rn).