A wireless sensor network mobile target tracking algorithm(ISO-EKF)based on improved snake optimization algorithm(ISO)is proposed to address the difficulty of estimating initial values when using extended Kalman filte...A wireless sensor network mobile target tracking algorithm(ISO-EKF)based on improved snake optimization algorithm(ISO)is proposed to address the difficulty of estimating initial values when using extended Kalman filtering to solve the state of nonlinear mobile target tracking.First,the steps of extended Kalman filtering(EKF)are introduced.Second,the ISO is used to adjust the parameters of the EKF in real time to adapt to the current motion state of the mobile target.Finally,the effectiveness of the algorithm is demonstrated through filtering and tracking using the constant velocity circular motion model(CM).Under the specified conditions,the position and velocity mean square error curves are compared among the snake optimizer(SO)-EKF algorithm,EKF algorithm,and the proposed algorithm.The comparison shows that the proposed algorithm reduces the root mean square error of position by 52%and 41%compared to the SOEKF algorithm and EKF algorithm,respectively.展开更多
At present,the prediction of brain tumors is performed using Machine Learning(ML)and Deep Learning(DL)algorithms.Although various ML and DL algorithms are adapted to predict brain tumors to some range,some concerns st...At present,the prediction of brain tumors is performed using Machine Learning(ML)and Deep Learning(DL)algorithms.Although various ML and DL algorithms are adapted to predict brain tumors to some range,some concerns still need enhancement,particularly accuracy,sensitivity,false positive and false negative,to improve the brain tumor prediction system symmetrically.Therefore,this work proposed an Extended Deep Learning Algorithm(EDLA)to measure performance parameters such as accuracy,sensitivity,and false positive and false negative rates.In addition,these iterated measures were analyzed by comparing the EDLA method with the Convolutional Neural Network(CNN)way further using the SPSS tool,and respective graphical illustrations were shown.The results were that the mean performance measures for the proposed EDLA algorithm were calculated,and those measured were accuracy(97.665%),sensitivity(97.939%),false positive(3.012%),and false negative(3.182%)for ten iterations.Whereas in the case of the CNN,the algorithm means accuracy gained was 94.287%,mean sensitivity 95.612%,mean false positive 5.328%,and mean false negative 4.756%.These results show that the proposed EDLA method has outperformed existing algorithms,including CNN,and ensures symmetrically improved parameters.Thus EDLA algorithm introduces novelty concerning its performance and particular activation function.This proposed method will be utilized effectively in brain tumor detection in a precise and accurate manner.This algorithm would apply to brain tumor diagnosis and be involved in various medical diagnoses aftermodification.If the quantity of dataset records is enormous,then themethod’s computation power has to be updated.展开更多
An extended crowding genetic algorithm (ECGA) is introduced for solvingoptimal pump configuration problem, which was presented by T. Westerlund in 1994. This problem hasbeen found to be non-convex, and the objective f...An extended crowding genetic algorithm (ECGA) is introduced for solvingoptimal pump configuration problem, which was presented by T. Westerlund in 1994. This problem hasbeen found to be non-convex, and the objective function contained several local optima and globaloptimality could not be ensured by all the traditional MINLP optimization method. The concepts ofspecies conserving and composite encoding are introduced to crowding genetic algorithm (CGA) formaintain the diversity of population more effectively and coping with the continuous and/or discretevariables in MINLP problem. The solution of three-levels pump configuration got from DICOPT++software (OA algorithm) is also given. By comparing with the solutions obtained from DICOPT++, ECPmethod, and MIN-MIN method, the ECGA algorithm proved to be very effective in finding the globaloptimal solution of multi-levels pump configuration via using the problem-specific information.展开更多
An extended algorithm of flexibility analysis with a local adjusting method for flexibility region of chemical processes, which is based on the active constraint strategy, is proposed, which fully exploits the flexibi...An extended algorithm of flexibility analysis with a local adjusting method for flexibility region of chemical processes, which is based on the active constraint strategy, is proposed, which fully exploits the flexibility region of the process system operation. The hyperrectangular flexibility region determined by the extended algorithm is larger than that calculated by the previous algorithms. The limitation of the proposed algorithm due to imperfect convexity and its corresponding verification measure are also discussed. Both numerical and actual chemical process examples are presented to demonstrate the effectiveness of the new algorithm.展开更多
In order to study the problem that particle swarm optimization (PSO) algorithm can easily trap into local mechanism when analyzing the high dimensional complex optimization problems, the optimization calculation using...In order to study the problem that particle swarm optimization (PSO) algorithm can easily trap into local mechanism when analyzing the high dimensional complex optimization problems, the optimization calculation using the information in the iterative process of more particles was analyzed and the optimal system of particle swarm algorithm was improved. The extended particle swarm optimization algorithm (EPSO) was proposed. The coarse-grained and fine-grained criteria that can control the selection were given to ensure the convergence of the algorithm. The two criteria considered the parameter selection mechanism under the situation of random probability. By adopting MATLAB7.1, the extended particle swarm optimization algorithm was demonstrated in the resource leveling of power project scheduling. EPSO was compared with genetic algorithm (GA) and common PSO, the result indicates that the variance of the objective function of resource leveling is decreased by 7.9%, 18.2%, respectively, certifying the effectiveness and stronger global convergence ability of the EPSO.展开更多
This communique is opted to study the approximate solution of the Algebraic Lyapunov equation on the manifold of positive-definite Hermitian matrices.We choose the geodesic distance betweenAHXXA an...This communique is opted to study the approximate solution of the Algebraic Lyapunov equation on the manifold of positive-definite Hermitian matrices.We choose the geodesic distance betweenAHXXA and P as the cost function,and put forward the Extended Hamiltonian algorithm(EHA)and Natural gradient algorithm(NGA)for the solution.Finally,several numerical experiments give you an idea about the effectiveness of the proposed algorithms.We also show the comparison between these two algorithms EHA and NGA.Obtained results are provided and analyzed graphically.We also conclude that the extended Hamiltonian algorithm has better convergence speed than the natural gradient algorithm,whereas the trajectory of the solution matrix is optimal in case of Natural gradient algorithm(NGA)as compared to Extended Hamiltonian Algorithm(EHA).The aim of this paper is to show that the Extended Hamiltonian algorithm(EHA)has superior convergence properties as compared to Natural gradient algorithm(NGA).Upto the best of author’s knowledge,no approximate solution of the Algebraic Lyapunov equation on the manifold of positive-definite Hermitian matrices is found so far in the literature.展开更多
A modified sequential linear programming algorithm is presented, whose subproblem is always solvable, for the extended linear complementarity problem (XLCP), the global convergence of the algorithm under assumption of...A modified sequential linear programming algorithm is presented, whose subproblem is always solvable, for the extended linear complementarity problem (XLCP), the global convergence of the algorithm under assumption of X-row sufficiency or X-colunm monotonicity is proved. As a result, a sufficient condition for existence and boundedness of solution to the XLCP are obtained.展开更多
General active contour algorithm, which uses the intensity of the image, has been used to actively segment objects. Because the objects have a similar intensity but different colors, it is difficult to segment any obj...General active contour algorithm, which uses the intensity of the image, has been used to actively segment objects. Because the objects have a similar intensity but different colors, it is difficult to segment any object from the others, Moreover, this algodthm can only be used in the simple environment since it is very sensitive to noise. In tinter to solve these problems. This paper proposes an extended active contour algorithm based on a color variance. In complex images, the color variance energy as the image energy is introduced into the general active contour algorithm. Experimental results show that the proposed active contour algorithm is very effective in various environments.展开更多
On the basis of Hartmann Shack sensor imaging analysis, a new method is presented with which the wavefront slope can be obtained when the object is incoherent and extended. This method, which is demonstrated by both ...On the basis of Hartmann Shack sensor imaging analysis, a new method is presented with which the wavefront slope can be obtained when the object is incoherent and extended. This method, which is demonstrated by both theoretical interpreting and computer simulation, explains how to measure the wavefront slope difference between two sub apertures through the determination of image displacements on detector plane. It includes a fast and accurate digital algorithm for detecting wavefront disturbance, which is much suitable for realization in such electrical hardwares as digital signal processors.展开更多
The behavior of the tip wake of a wind turbine is one of the hot issues in the wind power field.This problem can partially be tackled using Computational Fluid Dynamics(CFD).However,this approach lacks the ability to ...The behavior of the tip wake of a wind turbine is one of the hot issues in the wind power field.This problem can partially be tackled using Computational Fluid Dynamics(CFD).However,this approach lacks the ability to provide insights into the spatial structure of important high-order flows.Therefore,with the horizontal axis wind turbine as the main focus,in this work,firstly,we conduct CFD simulations of the wind turbine in order to obtain a data-driven basis relating to multiple working conditions for further analysis.Then,these data are studied using an extended Proper Orthogonal Decomposition(POD)algorithm.The quantitative results indicate that the tip vortex in the wake has a complicated spatio-temporal morphological configuration in the higher-order extended POD space.The radial velocity modes obtained are effective and credible,and such reconstructed flow of the tip vortex becomes clearer with the increase of the reconstruction orders.Interestingly,the changes of relatively high-order correlation coefficients are essentially affected by the periodic fusion of tip and central eddies in the wake.展开更多
可再生能源的高渗透率给电网供需匹配带来严峻挑战的同时,燃煤机组需要承担着大量的调峰调频任务,这对过热汽温系统的安全稳定运行造成了一定威胁,因此有必要建立面向热工控制的汽温数学模型。考虑到迟延型扩张状态观测器(time-delayed ...可再生能源的高渗透率给电网供需匹配带来严峻挑战的同时,燃煤机组需要承担着大量的调峰调频任务,这对过热汽温系统的安全稳定运行造成了一定威胁,因此有必要建立面向热工控制的汽温数学模型。考虑到迟延型扩张状态观测器(time-delayed extended state observer,TD-ESO)的总扰动信号中含有大量模型信息,提出一种基于ESO补偿模型的参数智能优化和信息提取方法,即以总扰动中未知信息量最小为目标,采用改进沙丘猫算法对模型参数优化并提取总扰动中已知模型信息补偿至ESO的输入端。在仿真算例方面,线性和非线性系统的测试结果表明,所提辨识方法对有无输入迟延的两种系统均有良好的适用性和较高的精度;在实际应用方面,基于超超临界二次再热机组的过热汽温系统数据进行模型辨识与验证,同样表明该建模方法是合理、准确的。因此,该文所建立的模型能够为汽温系统的控制策略设计和性能优化等方面提供有价值的参考。展开更多
基金supported by National Natural Science Foundation of China (Nos.62265010,62061024)Gansu Province Science and Technology Plan (No.23YFGA0062)Gansu Province Innovation Fund (No.2022A-215)。
文摘A wireless sensor network mobile target tracking algorithm(ISO-EKF)based on improved snake optimization algorithm(ISO)is proposed to address the difficulty of estimating initial values when using extended Kalman filtering to solve the state of nonlinear mobile target tracking.First,the steps of extended Kalman filtering(EKF)are introduced.Second,the ISO is used to adjust the parameters of the EKF in real time to adapt to the current motion state of the mobile target.Finally,the effectiveness of the algorithm is demonstrated through filtering and tracking using the constant velocity circular motion model(CM).Under the specified conditions,the position and velocity mean square error curves are compared among the snake optimizer(SO)-EKF algorithm,EKF algorithm,and the proposed algorithm.The comparison shows that the proposed algorithm reduces the root mean square error of position by 52%and 41%compared to the SOEKF algorithm and EKF algorithm,respectively.
基金supported by Project No.R-2023-23 of the Deanship of Scientific Research at Majmaah University.
文摘At present,the prediction of brain tumors is performed using Machine Learning(ML)and Deep Learning(DL)algorithms.Although various ML and DL algorithms are adapted to predict brain tumors to some range,some concerns still need enhancement,particularly accuracy,sensitivity,false positive and false negative,to improve the brain tumor prediction system symmetrically.Therefore,this work proposed an Extended Deep Learning Algorithm(EDLA)to measure performance parameters such as accuracy,sensitivity,and false positive and false negative rates.In addition,these iterated measures were analyzed by comparing the EDLA method with the Convolutional Neural Network(CNN)way further using the SPSS tool,and respective graphical illustrations were shown.The results were that the mean performance measures for the proposed EDLA algorithm were calculated,and those measured were accuracy(97.665%),sensitivity(97.939%),false positive(3.012%),and false negative(3.182%)for ten iterations.Whereas in the case of the CNN,the algorithm means accuracy gained was 94.287%,mean sensitivity 95.612%,mean false positive 5.328%,and mean false negative 4.756%.These results show that the proposed EDLA method has outperformed existing algorithms,including CNN,and ensures symmetrically improved parameters.Thus EDLA algorithm introduces novelty concerning its performance and particular activation function.This proposed method will be utilized effectively in brain tumor detection in a precise and accurate manner.This algorithm would apply to brain tumor diagnosis and be involved in various medical diagnoses aftermodification.If the quantity of dataset records is enormous,then themethod’s computation power has to be updated.
基金This project is supported by Provincial Science Foundation of Hebei (No.01213553).
文摘An extended crowding genetic algorithm (ECGA) is introduced for solvingoptimal pump configuration problem, which was presented by T. Westerlund in 1994. This problem hasbeen found to be non-convex, and the objective function contained several local optima and globaloptimality could not be ensured by all the traditional MINLP optimization method. The concepts ofspecies conserving and composite encoding are introduced to crowding genetic algorithm (CGA) formaintain the diversity of population more effectively and coping with the continuous and/or discretevariables in MINLP problem. The solution of three-levels pump configuration got from DICOPT++software (OA algorithm) is also given. By comparing with the solutions obtained from DICOPT++, ECPmethod, and MIN-MIN method, the ECGA algorithm proved to be very effective in finding the globaloptimal solution of multi-levels pump configuration via using the problem-specific information.
文摘An extended algorithm of flexibility analysis with a local adjusting method for flexibility region of chemical processes, which is based on the active constraint strategy, is proposed, which fully exploits the flexibility region of the process system operation. The hyperrectangular flexibility region determined by the extended algorithm is larger than that calculated by the previous algorithms. The limitation of the proposed algorithm due to imperfect convexity and its corresponding verification measure are also discussed. Both numerical and actual chemical process examples are presented to demonstrate the effectiveness of the new algorithm.
基金Project(70671040) supported by the National Natural Science Foundation of China
文摘In order to study the problem that particle swarm optimization (PSO) algorithm can easily trap into local mechanism when analyzing the high dimensional complex optimization problems, the optimization calculation using the information in the iterative process of more particles was analyzed and the optimal system of particle swarm algorithm was improved. The extended particle swarm optimization algorithm (EPSO) was proposed. The coarse-grained and fine-grained criteria that can control the selection were given to ensure the convergence of the algorithm. The two criteria considered the parameter selection mechanism under the situation of random probability. By adopting MATLAB7.1, the extended particle swarm optimization algorithm was demonstrated in the resource leveling of power project scheduling. EPSO was compared with genetic algorithm (GA) and common PSO, the result indicates that the variance of the objective function of resource leveling is decreased by 7.9%, 18.2%, respectively, certifying the effectiveness and stronger global convergence ability of the EPSO.
文摘This communique is opted to study the approximate solution of the Algebraic Lyapunov equation on the manifold of positive-definite Hermitian matrices.We choose the geodesic distance betweenAHXXA and P as the cost function,and put forward the Extended Hamiltonian algorithm(EHA)and Natural gradient algorithm(NGA)for the solution.Finally,several numerical experiments give you an idea about the effectiveness of the proposed algorithms.We also show the comparison between these two algorithms EHA and NGA.Obtained results are provided and analyzed graphically.We also conclude that the extended Hamiltonian algorithm has better convergence speed than the natural gradient algorithm,whereas the trajectory of the solution matrix is optimal in case of Natural gradient algorithm(NGA)as compared to Extended Hamiltonian Algorithm(EHA).The aim of this paper is to show that the Extended Hamiltonian algorithm(EHA)has superior convergence properties as compared to Natural gradient algorithm(NGA).Upto the best of author’s knowledge,no approximate solution of the Algebraic Lyapunov equation on the manifold of positive-definite Hermitian matrices is found so far in the literature.
文摘A modified sequential linear programming algorithm is presented, whose subproblem is always solvable, for the extended linear complementarity problem (XLCP), the global convergence of the algorithm under assumption of X-row sufficiency or X-colunm monotonicity is proved. As a result, a sufficient condition for existence and boundedness of solution to the XLCP are obtained.
基金supported by the Korea Research Foundation Grant funded by the Korean Government(MOEHRD),the MKE(The Ministry of knowledge Economy,Korea)the ITRC(Information Technology Research Center)support program(NIPA-2009-(C1090-0902-0007))
文摘General active contour algorithm, which uses the intensity of the image, has been used to actively segment objects. Because the objects have a similar intensity but different colors, it is difficult to segment any object from the others, Moreover, this algodthm can only be used in the simple environment since it is very sensitive to noise. In tinter to solve these problems. This paper proposes an extended active contour algorithm based on a color variance. In complex images, the color variance energy as the image energy is introduced into the general active contour algorithm. Experimental results show that the proposed active contour algorithm is very effective in various environments.
文摘On the basis of Hartmann Shack sensor imaging analysis, a new method is presented with which the wavefront slope can be obtained when the object is incoherent and extended. This method, which is demonstrated by both theoretical interpreting and computer simulation, explains how to measure the wavefront slope difference between two sub apertures through the determination of image displacements on detector plane. It includes a fast and accurate digital algorithm for detecting wavefront disturbance, which is much suitable for realization in such electrical hardwares as digital signal processors.
基金supported by the PhD Start-up Fund from Chongqing University of Science and Technology(No.181903017)the Key R&D Project from Science and Technology of Chongqing(No.cstc2018jszx-cyztzx0003)the Key R&D Project from Science and Technology of Chongqing(No.cstc2018jszx-cyzd0092).
文摘The behavior of the tip wake of a wind turbine is one of the hot issues in the wind power field.This problem can partially be tackled using Computational Fluid Dynamics(CFD).However,this approach lacks the ability to provide insights into the spatial structure of important high-order flows.Therefore,with the horizontal axis wind turbine as the main focus,in this work,firstly,we conduct CFD simulations of the wind turbine in order to obtain a data-driven basis relating to multiple working conditions for further analysis.Then,these data are studied using an extended Proper Orthogonal Decomposition(POD)algorithm.The quantitative results indicate that the tip vortex in the wake has a complicated spatio-temporal morphological configuration in the higher-order extended POD space.The radial velocity modes obtained are effective and credible,and such reconstructed flow of the tip vortex becomes clearer with the increase of the reconstruction orders.Interestingly,the changes of relatively high-order correlation coefficients are essentially affected by the periodic fusion of tip and central eddies in the wake.
文摘可再生能源的高渗透率给电网供需匹配带来严峻挑战的同时,燃煤机组需要承担着大量的调峰调频任务,这对过热汽温系统的安全稳定运行造成了一定威胁,因此有必要建立面向热工控制的汽温数学模型。考虑到迟延型扩张状态观测器(time-delayed extended state observer,TD-ESO)的总扰动信号中含有大量模型信息,提出一种基于ESO补偿模型的参数智能优化和信息提取方法,即以总扰动中未知信息量最小为目标,采用改进沙丘猫算法对模型参数优化并提取总扰动中已知模型信息补偿至ESO的输入端。在仿真算例方面,线性和非线性系统的测试结果表明,所提辨识方法对有无输入迟延的两种系统均有良好的适用性和较高的精度;在实际应用方面,基于超超临界二次再热机组的过热汽温系统数据进行模型辨识与验证,同样表明该建模方法是合理、准确的。因此,该文所建立的模型能够为汽温系统的控制策略设计和性能优化等方面提供有价值的参考。