Hydraulic servo system plays an important role in industrial fields due to the advantages of high response,small size-to-power ratio and large driving force.However,inherent nonlinear behaviors and modeling uncertaint...Hydraulic servo system plays an important role in industrial fields due to the advantages of high response,small size-to-power ratio and large driving force.However,inherent nonlinear behaviors and modeling uncertainties are the main obstacles for hydraulic servo system to achieve high tracking perfor-mance.To deal with these difficulties,this paper presents a backstepping sliding mode controller to improve the dynamic tracking performance and anti-interfer-ence ability.For this purpose,the nonlinear dynamic model is firstly established,where the nonlinear behaviors and modeling uncertainties are lumped as one term.Then,the extended state observer is introduced to estimate the lumped distur-bance.The system stability is proved by using the Lyapunov stability theorem.Finally,comparative simulation and experimental are conducted on a hydraulic servo system platform to verify the efficiency of the proposed control scheme.展开更多
The state-space neural network and extended Kalman filter model is used to directly predict the optimal timing plan that corresponds to futuristic traffic conditions in real time with the purposes of avoiding the lagg...The state-space neural network and extended Kalman filter model is used to directly predict the optimal timing plan that corresponds to futuristic traffic conditions in real time with the purposes of avoiding the lagging of the signal timing plans to traffic conditions. Utilizing the traffic conditions in current and former intervals, the network topology of the state-space neural network (SSNN), which is derived from the geometry of urban arterial routes, is used to predict the optimal timing plan corresponding to the traffic conditions in the next time interval. In order to improve the effectiveness of the SSNN, the extended Kalman filter (EKF) is proposed to train the SSNN instead of conventional approaches. Raw traffic data of the Guangzhou Road, Nanjing and the optimal signal timing plan generated by a multi-objective optimization genetic algorithm are applied to test the performance of the proposed model. The results indicate that compared with the SSNN and the BP neural network, the proposed model can closely match the optimal timing plans in futuristic states with higher efficiency.展开更多
A speed sensorless vector control system of induction motor with estimated rotor speed and rotor flux using a new reduced order extended Kalman filter is proposed. With this method, two rotor flux components are sele...A speed sensorless vector control system of induction motor with estimated rotor speed and rotor flux using a new reduced order extended Kalman filter is proposed. With this method, two rotor flux components are selected as the state variables, and the rotor speed as an estimated parameter is regarded as an augmented state variable. The algorithm with reduced order decreases the computational complexity and makes the proposed estimator feasible to be implemented in real time. The simulation results show high accuracy of the estimation algorithm and good performance of speed control, and verify the usefulness of the proposed algorithm.展开更多
A full-order sliding mode control based on a fuzzy extended state observer is proposed to control the uncertain chaos in the permanent magnet synchronous motor. Through a simple coordinate transformation, the chaotic ...A full-order sliding mode control based on a fuzzy extended state observer is proposed to control the uncertain chaos in the permanent magnet synchronous motor. Through a simple coordinate transformation, the chaotic PMSM model is transformed into the Brunovsky canonical form, which is more suitable for the controller design. Based on the fuzzy control theory, a fuzzy extended state observer is developed to estimate the unknown states and uncertainties, and the restriction that all the system states should be completely measurable is avoided. Thereafter, a full-order sliding mode controller is designed to ensure the convergence of all system states without any chattering problem. Comparative simulations show the effectiveness and superior performance of the proposed control method.展开更多
In the field of civil engineering, magnetorheological fluid (MRF) damper-based semi-active control systems have received considerable attention for use in protecting structures from natural hazards such as strong ea...In the field of civil engineering, magnetorheological fluid (MRF) damper-based semi-active control systems have received considerable attention for use in protecting structures from natural hazards such as strong earthquakes and high winds. In this paper, the MRF damper-based semi-active control system is applied to a long-span spatially extended structure and its feasibility is discussed. Meanwhile, a _trust-region method based instantaneous optimal semi-active control algorithm (TIOC) is proposed to improve the performance of the semi-active control system in a multiple damper situation. The proposed TIOC describes the control process as a bounded constraint optimization problem, in which an optimal semi- active control force vector is solved by the trust-region method in every control step to minimize the structural responses. A numerical example of a railway station roof structure installed with MRF-04K dampers is presented. First, a modified Bouc- Wen model is utilized to describe the behavior of the selected MRF-04K damper. Then, two semi-active control systems, including the well-known clipped-optimal controller and the proposed TIOC controller, are considered. Based on the characteristics of the long-span spatially extended structure, the performance of the control system is evaluated under uniform earthquake excitation and travelling-wave excitation with different apparent velocities. The simulation results indicate that the MR fluid damper-based semi-active control systems have the potential to mitigate the responses of full-scale long-span spatially extended structures under earthquake hazards. The superiority of the proposed TIOC controller is demonstrated by comparing its control effectiveness with the clipped-optimal controller for several different cases.展开更多
For the appearance of the additive perturbation of controller gain when the controller parameter has minute adjustment at the initial running stage of system,to avoid the adverse effects,this paper investigates the mi...For the appearance of the additive perturbation of controller gain when the controller parameter has minute adjustment at the initial running stage of system,to avoid the adverse effects,this paper investigates the mixed H_2/H_∞ state feedback attitude control problem of microsatellite based on extended LMI method.Firstly,the microsatellite attitude control system is established and transformed into corresponding state space form.Then,without the equivalence restriction of the two Lyapunov variables of H_2 and H∞performance,this paper introduces additional variables to design the mixed H_2/H_∞ control method based on LMI which can also reduce the conservatives.Finally,numerical simulations are analyzed to show that the proposed method can make the satellite stable within 20 s whether there is additive perturbation of the controller gain or not.The comparative analysis of the simulation results between extended LMI method and traditional LMI method also demonstrates the effectiveness and feasibility of the proposed method in this paper.展开更多
In this study,a composite strategy based on sliding-mode control( SMC) is employed in a permanent-magnet synchronous motor vector control system to improve the system robustness performance against parameter variation...In this study,a composite strategy based on sliding-mode control( SMC) is employed in a permanent-magnet synchronous motor vector control system to improve the system robustness performance against parameter variations and load disturbances. To handle the intrinsic chattering of SMC,an adaptive law and an extended state observer( ESO) are utilized in the speed SMC controller design. The adaptive law is used to estimate the internal parameter variations and compensate for the disturbances caused by model uncertainty. In addition,the ESO is introduced to estimate the load disturbance in real time. The estimated value is used as a feed-forward compensator for the speed adaptive sliding-mode controller to further increase the system's ability to resist disturbances. The proposed composite method,which combines adaptive SMC( ASMC) and ESO,is compared with PI control and ASMC. Both the simulation and experimental results demonstrate that the proposed method alleviates the chattering of SMC systems and improves the dynamic response and robustness of the speed control system against disturbances.展开更多
Combining information entropy and wavelet analysis with neural network,an adaptive control system and an adaptive control algorithm are presented for machining process based on extended entropy square error(EESE)and w...Combining information entropy and wavelet analysis with neural network,an adaptive control system and an adaptive control algorithm are presented for machining process based on extended entropy square error(EESE)and wavelet neural network(WNN).Extended entropy square error function is defined and its availability is proved theoretically.Replacing the mean square error criterion of BP algorithm with the EESE criterion,the proposed system is then applied to the on-line control of the cutting force with variable cutting parameters by searching adaptively wavelet base function and self adjusting scaling parameter,translating parameter of the wavelet and neural network weights.Simulation results show that the designed system is of fast response,non-overshoot and it is more effective than the conventional adaptive control of machining process based on the neural network.The suggested algorithm can adaptively adjust the feed rate on-line till achieving a constant cutting force approaching the reference force in varied cutting conditions,thus improving the machining efficiency and protecting the tool.展开更多
Precise position tracking control of the single-rod pneumatic actuator is considered and a nonlinear cascade controller is developed.The proposed controller comprises an extended disturbance observer(EDOB)and a nonlin...Precise position tracking control of the single-rod pneumatic actuator is considered and a nonlinear cascade controller is developed.The proposed controller comprises an extended disturbance observer(EDOB)and a nonlinear robust control law synthesized by the backstepping method.The EDOB is designed to estimate not only the influence of disturbances but also the parameter uncertainties.With the use of parameter and disturbance estimates,the nonlinear cascade controller,which consists of an outer position tracking loop and an inner load pressure loop,is further designed to attenuate the effects of parameter and disturbance estimation errors.The stability of the closed-loop system is proven by means of Lyapunov theory.Extensive comparative experimental results obtained verify the effectiveness of the proposed nonlinear cascade controller and its performance robustness to parameter and external disturbance variations in practical implementation.展开更多
This paper uses a robust feedback linearization strategy in order to assure a good dynamic performance, stability and a decoupling of the currents for Permanent Magnet Synchronous Motor (PMSM) in a rotating reference ...This paper uses a robust feedback linearization strategy in order to assure a good dynamic performance, stability and a decoupling of the currents for Permanent Magnet Synchronous Motor (PMSM) in a rotating reference frame (d, q). However this control requires the knowledge of certain variables (speed, torque, position) that are difficult to access or its sensors require the additional mounting space, reduce the reliability in harsh environments and increase the cost of motor. And also a stator resistance variation can induce a performance degradation of the system. Thus a sixth-order Discrete-time Extended Kalman Filter approach is proposed for on-line estimation of speed, rotor position, load torque and stator resistance in a PMSM. The interesting simulations results obtained on a PMSM subjected to the load disturbance show very well the effectiveness and good performance of the proposed nonlinear feedback control and Extended Kalman Filter algorithm for the estimation in the presence of parameter variation and measurement noise.展开更多
A novel digital implementation of speed controller for a Permanent Magnet Synchronous Motor (PMSM) with disturbance rejection using conventional observer combined with Extended Kalman Filter (EKF) is proposed. First, ...A novel digital implementation of speed controller for a Permanent Magnet Synchronous Motor (PMSM) with disturbance rejection using conventional observer combined with Extended Kalman Filter (EKF) is proposed. First, the EKF is constructed to achieve a precise estimation of the speed and current from the noisy measurement. Second, a proportional integral derivative (PID) controller is developed based on Linear Quadratic Regulator (LQR) to achieve speed command tracking performance. Then, an observer is designed and its error is utilized to provide load disturbance compensation. The proposed method greatly enhances the PMSM performance by reducing the control signal variation as well as the disturbance. The speed control performance is significantly improved compared to the case when we have an observer acting alone. The simulation results for the speed response and variation of the states when the PMSM is subjected to the load disturbance are presented. The results verify the effectiveness of the proposed method.展开更多
A novel double extended state observer(DESO)based on model predictive torque control(MPTC)strategy is developed for three-phase permanent magnet synchronous motor(PMSM)drive system without current sensor.In general,to...A novel double extended state observer(DESO)based on model predictive torque control(MPTC)strategy is developed for three-phase permanent magnet synchronous motor(PMSM)drive system without current sensor.In general,to achieve high-precision control,two-phase current sensors are necessary for successful implementation of MPTC.For this purpose,two ESOs are used to estimate q-axis current and stator resistance respectively,and then based on this,d-axis current is estimated.Moreover,to reduce torque and flux ripple and to improve the performance of the torque and speed,MPTC strategy is designed.The simulation results validate the feasibility and effectiveness of the proposed scheme.展开更多
A tilt-rotor aircraft has three flight modes: helicopter mode, airplane mode and conversion mode. Unlike the traditional aircraft, the tilt-rotor aircraft, which combines the characteristics of helicopters and fixed-w...A tilt-rotor aircraft has three flight modes: helicopter mode, airplane mode and conversion mode. Unlike the traditional aircraft, the tilt-rotor aircraft, which combines the characteristics of helicopters and fixed-wing aircraft, is a complex multi-body system with the violent variation of the aerodynamic parameters. For these characteristics, a new smooth switching control scheme is provided for the tilt-rotor aircraft. First, the reference commands for airspeed and nacelle angles are calculated by analyzing the conversion corridor and the conversion path. Subsequently, based on the finite-time switching theorem, an average dwell time condition is designed to guarantee the stability in the switching process. Besides, considering the state vibrations and bumps may appear in switching points, the fuzzy weighted logic is employed to improve the system transient performance. For disturbance rejection, three extended state observers are designed separately to estimate the disturbances in the switched systems. Compared with the traditional auto disturbance rejection control and proportion integration differentiation control, this method overcomes the conservatism of wasting the whole model information. The control performances of robustness and smoothness are verified with simulation, which shows that the new smooth switching control scheme is more targeted and superior than the traditional design method.展开更多
A novel non-contact spacecraft architecture with the extended stochastic state observer for disturbance rejection control of the gravity satellite is proposed.First,the precise linear driving non-contact voice-coil ac...A novel non-contact spacecraft architecture with the extended stochastic state observer for disturbance rejection control of the gravity satellite is proposed.First,the precise linear driving non-contact voice-coil actuators are used to separate the whole spacecraft into the non-contact payload module and the service module,and to build an ideal loop with precise dynamics for disturbance rejection control of the payload module.Second,an extended stochastic state observer is enveloped to construct the overall nonlinear external terms and the internal coupled terms of the payload module,enabling the controller design of the payload module turned into the linear form with simple bandwidth-parameterization tuning in the frequency domain.As a result,the disturbance rejection control of the payload module can be explicitly achieved in a timely manner without complicated tuning in actual implementation.Finally,an extensive numerical simulation is conducted to validate the feasibility and effectiveness of the proposed approach.展开更多
This article proposes an innovative strategy to the problem of non-linear estimation of states for electrical machine systems. This method allows the estimation of variables that are difficult to access or that are si...This article proposes an innovative strategy to the problem of non-linear estimation of states for electrical machine systems. This method allows the estimation of variables that are difficult to access or that are simply impossible to measure. Thus, as compared with a full-order sliding mode observer, in order to reduce the execution time of the estimation, a reduced-order discrete-time Extended sliding mode observer is proposed for on-line estimation of rotor flux, speed and rotor resistance in an induction motor using a robust feedback linearization control. Simulations results on Matlab-Simulink environment for a 1.8 kW induction motor are presented to prove the effectiveness and high robustness of the proposed nonlinear control and observer against modeling uncertainty and measurement noise.展开更多
In this paper,an integrated estimation guidance and control(IEGC)system is designed based on the command filtered backstepping approach for circular field-of-view(FOV)strapdown missiles.The threedimensional integrated...In this paper,an integrated estimation guidance and control(IEGC)system is designed based on the command filtered backstepping approach for circular field-of-view(FOV)strapdown missiles.The threedimensional integrated estimation guidance and control nonlinear model with limited actuator deflection angle is established considering the seeker's FOV constraint.The boundary time-varying integral barrier Lyapunov function(IBLF)is employed in backstepping design to constrain the body line-of-sight(BLOS)in IEGC system to fit a circular FOV.Then,the nonlinear adaptive controller is designed to estimate the changing aerodynamic parameters.The generalized extended state observer(GESO)is designed to estimate the acceleration of the maneuvering targets and the unmatched time-varying disturbances for improving tracking accuracy.Furthermore,the command filters are used to solve the"differential expansion"problem during the backstepping design.The Lyapunov theory is used to prove the stability of the overall closed-loop IEGC system.Finally,the simulation results validate the integrated system's effectiveness,achieving high accuracy strikes against maneuvering targets.展开更多
In this paper,an integrated guidance and control method based on an adaptive path-following controller is proposed to control a spin-stabilized projectile with only translational motion information under the constrain...In this paper,an integrated guidance and control method based on an adaptive path-following controller is proposed to control a spin-stabilized projectile with only translational motion information under the constraint of an actuator,uncertainties in aerodynamic parameters and measurements,and control system complexity.Owing to the fairly high rotation speed,the dynamic model of this missile is strongly nonlinear,uncertain and coupled in pitch,yaw and roll channels.A theoretical equivalent resultant force and uncertainty compensation method are comprehensively used to realize decoupling of pitch and yaw.In response to the strong nonlinear and time-varying characteristics of the dynamic system,the quasi-linear model whose parameters are obtained by interpolation of points selected as the segmentation points in the trajectory envelope,is used for calculation in each step.To cope with the system uncertainty caused by model approximation,parameter uncertainty and ballistic interference,an extended state estimator is used to compensate the output feedback according to the test ballistic angle.In order to improve the tracking efficiency and ensure the tracking error convergence with only translational motion information,the virtual guide point,whose derivative is deduced according to the Lyapunov principle,is calculated in real time according to the projection relationship between the real-time position and the reference trajectory,and a virtual line-of-sight angle and the backstepping method are used for the design of the guidance and control system.In order to avoid the influence of control input saturation on the guidance and control performance due to the actuator limitation and improve the robustness of the system,an anti-saturation compensator is designed according to the two-step method.The feasibility and effectiveness of the path-following controller is verified through closed-loop flight simulations with measurement,control,and condition uncertainties.The results indicate that the designed controller can converge to the reference path and evidently decrease the distance between the impact point and target under different uncertainties.展开更多
A winding system is a time-varying system that considers complex nonlinear characteristics,and how to control the stability of the winding tension during the winding process is the primary problem that has hindered de...A winding system is a time-varying system that considers complex nonlinear characteristics,and how to control the stability of the winding tension during the winding process is the primary problem that has hindered development in this field in recent years.Many nonlinear factors affect the tension in the winding process,such as friction,structured uncertainties,unstructured uncertainties,and external interference.These terms severely restrict the tension tracking performance.Existing tension control strategies are mainly based on the composite control of the tension and speed loops,and previous studies involve complex decoupling operations.Owing to the large number of calculations required for this method,it is inconvenient for practical engineering applications.To simplify the tension generation mechanism and the influence of the nonlinear characteristics of the winding system,a simpler nonlinear dynamic model of the winding tension was established.An adaptive method was applied to update the feedback gain of the continuous robust integral of the sign of the error(RISE).Furthermore,an extended state observer was used to estimate modeling errors and external disturbances.The model disturbance term can be compensated for in the designed RISE controller.The asymptotic stability of the system was proven according to the Lyapunov stability theory.Finally,a comparative analysis of the proposed nonlinear controller and several other controllers was performed.The results indicated that the control of the winding tension was significantly enhanced.展开更多
The robotic airship can provide a promising aerostatic platform for many potential applications.These applications require a precise autonomous trajectory tracking control for airship.Airship has a nonlinear and uncer...The robotic airship can provide a promising aerostatic platform for many potential applications.These applications require a precise autonomous trajectory tracking control for airship.Airship has a nonlinear and uncertain dynamics.It is prone to wind disturbances that offer a challenge for a trajectory tracking control design.This paper addresses the airship trajectory tracking problem having time varying reference path.A lumped parameter estimation approach under model uncertainties and wind disturbances is opted against distributed parameters.It uses extended Kalman filter(EKF)for uncertainty and disturbance estimation.The estimated parameters are used by sliding mode controller(SMC)for ultimate control of airship trajectory tracking.This comprehensive algorithm,EKF based SMC(ESMC),is used as a robust solution to track airship trajectory.The proposed estimator provides the estimates of wind disturbances as well as model uncertainty due to the mass matrix variations and aerodynamic model inaccuracies.The stability and convergence of the proposed method are investigated using the Lyapunov stability analysis.The simulation results show that the proposed method efficiently tracks the desired trajectory.The method solves the stability,convergence,and chattering problem of SMC under model uncertainties and wind disturbances.展开更多
This paper investigates the adaptive synchronization of hyperchaotic Lii systems based on the method of extended passive control. By combining the feedback control, the extended passive control method with two output ...This paper investigates the adaptive synchronization of hyperchaotic Lii systems based on the method of extended passive control. By combining the feedback control, the extended passive control method with two output variables is developed, which can synchronize hyperchaotic Lu systems asymptotically and globally more easily without knowing the bound of state of the hyperchaotic system. Adaptive laws are introduced to estimate the unknown parameters as well. Simulation results show the effectiveness and flexibility of the proposed control scheme.展开更多
基金Thework issupportedby the Key Scienceand Technology Programof Henan Province(Grant No.222102220104)the Science and Technology Key Project Foundation of Henan Provincial Education Department(Grant No.23A460014)the High Level Talent Foundation of Henan University of Technology(Grant No.2020BS043).
文摘Hydraulic servo system plays an important role in industrial fields due to the advantages of high response,small size-to-power ratio and large driving force.However,inherent nonlinear behaviors and modeling uncertainties are the main obstacles for hydraulic servo system to achieve high tracking perfor-mance.To deal with these difficulties,this paper presents a backstepping sliding mode controller to improve the dynamic tracking performance and anti-interfer-ence ability.For this purpose,the nonlinear dynamic model is firstly established,where the nonlinear behaviors and modeling uncertainties are lumped as one term.Then,the extended state observer is introduced to estimate the lumped distur-bance.The system stability is proved by using the Lyapunov stability theorem.Finally,comparative simulation and experimental are conducted on a hydraulic servo system platform to verify the efficiency of the proposed control scheme.
基金The National Natural Science Foundation of China (No.50422283)the Soft Science Research Project of Ministry of Housing and Urban-Rural Development of China (No.2008-K5-14)
文摘The state-space neural network and extended Kalman filter model is used to directly predict the optimal timing plan that corresponds to futuristic traffic conditions in real time with the purposes of avoiding the lagging of the signal timing plans to traffic conditions. Utilizing the traffic conditions in current and former intervals, the network topology of the state-space neural network (SSNN), which is derived from the geometry of urban arterial routes, is used to predict the optimal timing plan corresponding to the traffic conditions in the next time interval. In order to improve the effectiveness of the SSNN, the extended Kalman filter (EKF) is proposed to train the SSNN instead of conventional approaches. Raw traffic data of the Guangzhou Road, Nanjing and the optimal signal timing plan generated by a multi-objective optimization genetic algorithm are applied to test the performance of the proposed model. The results indicate that compared with the SSNN and the BP neural network, the proposed model can closely match the optimal timing plans in futuristic states with higher efficiency.
文摘A speed sensorless vector control system of induction motor with estimated rotor speed and rotor flux using a new reduced order extended Kalman filter is proposed. With this method, two rotor flux components are selected as the state variables, and the rotor speed as an estimated parameter is regarded as an augmented state variable. The algorithm with reduced order decreases the computational complexity and makes the proposed estimator feasible to be implemented in real time. The simulation results show high accuracy of the estimation algorithm and good performance of speed control, and verify the usefulness of the proposed algorithm.
基金supported by the National Natural Science Foundation of China(Grant Nos.61403343 and 61433003)the Scientific Research Foundation of Education Department of Zhejiang Province,China(Grant No.Y201329260)the Natural Science Foundation of Zhejiang University of Technology,China(Grant No.1301103053408)
文摘A full-order sliding mode control based on a fuzzy extended state observer is proposed to control the uncertain chaos in the permanent magnet synchronous motor. Through a simple coordinate transformation, the chaotic PMSM model is transformed into the Brunovsky canonical form, which is more suitable for the controller design. Based on the fuzzy control theory, a fuzzy extended state observer is developed to estimate the unknown states and uncertainties, and the restriction that all the system states should be completely measurable is avoided. Thereafter, a full-order sliding mode controller is designed to ensure the convergence of all system states without any chattering problem. Comparative simulations show the effectiveness and superior performance of the proposed control method.
基金Supported by:National Science Fund for Distinguished Young Scholars of China Under Grant No. 50425824the National Natural Science Foundation of China Under Grant No.50578109,90715034 and 90715032
文摘In the field of civil engineering, magnetorheological fluid (MRF) damper-based semi-active control systems have received considerable attention for use in protecting structures from natural hazards such as strong earthquakes and high winds. In this paper, the MRF damper-based semi-active control system is applied to a long-span spatially extended structure and its feasibility is discussed. Meanwhile, a _trust-region method based instantaneous optimal semi-active control algorithm (TIOC) is proposed to improve the performance of the semi-active control system in a multiple damper situation. The proposed TIOC describes the control process as a bounded constraint optimization problem, in which an optimal semi- active control force vector is solved by the trust-region method in every control step to minimize the structural responses. A numerical example of a railway station roof structure installed with MRF-04K dampers is presented. First, a modified Bouc- Wen model is utilized to describe the behavior of the selected MRF-04K damper. Then, two semi-active control systems, including the well-known clipped-optimal controller and the proposed TIOC controller, are considered. Based on the characteristics of the long-span spatially extended structure, the performance of the control system is evaluated under uniform earthquake excitation and travelling-wave excitation with different apparent velocities. The simulation results indicate that the MR fluid damper-based semi-active control systems have the potential to mitigate the responses of full-scale long-span spatially extended structures under earthquake hazards. The superiority of the proposed TIOC controller is demonstrated by comparing its control effectiveness with the clipped-optimal controller for several different cases.
文摘For the appearance of the additive perturbation of controller gain when the controller parameter has minute adjustment at the initial running stage of system,to avoid the adverse effects,this paper investigates the mixed H_2/H_∞ state feedback attitude control problem of microsatellite based on extended LMI method.Firstly,the microsatellite attitude control system is established and transformed into corresponding state space form.Then,without the equivalence restriction of the two Lyapunov variables of H_2 and H∞performance,this paper introduces additional variables to design the mixed H_2/H_∞ control method based on LMI which can also reduce the conservatives.Finally,numerical simulations are analyzed to show that the proposed method can make the satellite stable within 20 s whether there is additive perturbation of the controller gain or not.The comparative analysis of the simulation results between extended LMI method and traditional LMI method also demonstrates the effectiveness and feasibility of the proposed method in this paper.
基金Supported by the National Natural Science Foundation of China(No.11603024)
文摘In this study,a composite strategy based on sliding-mode control( SMC) is employed in a permanent-magnet synchronous motor vector control system to improve the system robustness performance against parameter variations and load disturbances. To handle the intrinsic chattering of SMC,an adaptive law and an extended state observer( ESO) are utilized in the speed SMC controller design. The adaptive law is used to estimate the internal parameter variations and compensate for the disturbances caused by model uncertainty. In addition,the ESO is introduced to estimate the load disturbance in real time. The estimated value is used as a feed-forward compensator for the speed adaptive sliding-mode controller to further increase the system's ability to resist disturbances. The proposed composite method,which combines adaptive SMC( ASMC) and ESO,is compared with PI control and ASMC. Both the simulation and experimental results demonstrate that the proposed method alleviates the chattering of SMC systems and improves the dynamic response and robustness of the speed control system against disturbances.
基金Sponsored by the Natural Science Foundation of Guangdong Province(Grant No.06025546)the National Natural Science Foundation of China(Grant No.50305005).
文摘Combining information entropy and wavelet analysis with neural network,an adaptive control system and an adaptive control algorithm are presented for machining process based on extended entropy square error(EESE)and wavelet neural network(WNN).Extended entropy square error function is defined and its availability is proved theoretically.Replacing the mean square error criterion of BP algorithm with the EESE criterion,the proposed system is then applied to the on-line control of the cutting force with variable cutting parameters by searching adaptively wavelet base function and self adjusting scaling parameter,translating parameter of the wavelet and neural network weights.Simulation results show that the designed system is of fast response,non-overshoot and it is more effective than the conventional adaptive control of machining process based on the neural network.The suggested algorithm can adaptively adjust the feed rate on-line till achieving a constant cutting force approaching the reference force in varied cutting conditions,thus improving the machining efficiency and protecting the tool.
基金Project(51505474)supported by the National Natural Science Foundation of ChinaProject(2015XKMS020)supported by the Fundamental Research Funds for the Central Universities,China+1 种基金Project(2016T90520)supported by the China Postdoctoral Science FoundationProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Precise position tracking control of the single-rod pneumatic actuator is considered and a nonlinear cascade controller is developed.The proposed controller comprises an extended disturbance observer(EDOB)and a nonlinear robust control law synthesized by the backstepping method.The EDOB is designed to estimate not only the influence of disturbances but also the parameter uncertainties.With the use of parameter and disturbance estimates,the nonlinear cascade controller,which consists of an outer position tracking loop and an inner load pressure loop,is further designed to attenuate the effects of parameter and disturbance estimation errors.The stability of the closed-loop system is proven by means of Lyapunov theory.Extensive comparative experimental results obtained verify the effectiveness of the proposed nonlinear cascade controller and its performance robustness to parameter and external disturbance variations in practical implementation.
文摘This paper uses a robust feedback linearization strategy in order to assure a good dynamic performance, stability and a decoupling of the currents for Permanent Magnet Synchronous Motor (PMSM) in a rotating reference frame (d, q). However this control requires the knowledge of certain variables (speed, torque, position) that are difficult to access or its sensors require the additional mounting space, reduce the reliability in harsh environments and increase the cost of motor. And also a stator resistance variation can induce a performance degradation of the system. Thus a sixth-order Discrete-time Extended Kalman Filter approach is proposed for on-line estimation of speed, rotor position, load torque and stator resistance in a PMSM. The interesting simulations results obtained on a PMSM subjected to the load disturbance show very well the effectiveness and good performance of the proposed nonlinear feedback control and Extended Kalman Filter algorithm for the estimation in the presence of parameter variation and measurement noise.
文摘A novel digital implementation of speed controller for a Permanent Magnet Synchronous Motor (PMSM) with disturbance rejection using conventional observer combined with Extended Kalman Filter (EKF) is proposed. First, the EKF is constructed to achieve a precise estimation of the speed and current from the noisy measurement. Second, a proportional integral derivative (PID) controller is developed based on Linear Quadratic Regulator (LQR) to achieve speed command tracking performance. Then, an observer is designed and its error is utilized to provide load disturbance compensation. The proposed method greatly enhances the PMSM performance by reducing the control signal variation as well as the disturbance. The speed control performance is significantly improved compared to the case when we have an observer acting alone. The simulation results for the speed response and variation of the states when the PMSM is subjected to the load disturbance are presented. The results verify the effectiveness of the proposed method.
基金National Natural Science Foundation of China(No.61463025)Opening Foundation of Key Laboratory of Opto-technology and Intelligent Control(Lanzhou Jiaotong University),Ministry of Education(No.KFKT2018-8)
文摘A novel double extended state observer(DESO)based on model predictive torque control(MPTC)strategy is developed for three-phase permanent magnet synchronous motor(PMSM)drive system without current sensor.In general,to achieve high-precision control,two-phase current sensors are necessary for successful implementation of MPTC.For this purpose,two ESOs are used to estimate q-axis current and stator resistance respectively,and then based on this,d-axis current is estimated.Moreover,to reduce torque and flux ripple and to improve the performance of the torque and speed,MPTC strategy is designed.The simulation results validate the feasibility and effectiveness of the proposed scheme.
基金supported by the Aeronautical Science Foundation of China(20175752045)。
文摘A tilt-rotor aircraft has three flight modes: helicopter mode, airplane mode and conversion mode. Unlike the traditional aircraft, the tilt-rotor aircraft, which combines the characteristics of helicopters and fixed-wing aircraft, is a complex multi-body system with the violent variation of the aerodynamic parameters. For these characteristics, a new smooth switching control scheme is provided for the tilt-rotor aircraft. First, the reference commands for airspeed and nacelle angles are calculated by analyzing the conversion corridor and the conversion path. Subsequently, based on the finite-time switching theorem, an average dwell time condition is designed to guarantee the stability in the switching process. Besides, considering the state vibrations and bumps may appear in switching points, the fuzzy weighted logic is employed to improve the system transient performance. For disturbance rejection, three extended state observers are designed separately to estimate the disturbances in the switched systems. Compared with the traditional auto disturbance rejection control and proportion integration differentiation control, this method overcomes the conservatism of wasting the whole model information. The control performances of robustness and smoothness are verified with simulation, which shows that the new smooth switching control scheme is more targeted and superior than the traditional design method.
基金supported by the National Natural Science Foundation of China(5170532751805329)+1 种基金Fundamental Research Funds for the Central Universities of China(NS2020065)the Natural Science Foundation of Shanghai(19ZR1453300).
文摘A novel non-contact spacecraft architecture with the extended stochastic state observer for disturbance rejection control of the gravity satellite is proposed.First,the precise linear driving non-contact voice-coil actuators are used to separate the whole spacecraft into the non-contact payload module and the service module,and to build an ideal loop with precise dynamics for disturbance rejection control of the payload module.Second,an extended stochastic state observer is enveloped to construct the overall nonlinear external terms and the internal coupled terms of the payload module,enabling the controller design of the payload module turned into the linear form with simple bandwidth-parameterization tuning in the frequency domain.As a result,the disturbance rejection control of the payload module can be explicitly achieved in a timely manner without complicated tuning in actual implementation.Finally,an extensive numerical simulation is conducted to validate the feasibility and effectiveness of the proposed approach.
文摘This article proposes an innovative strategy to the problem of non-linear estimation of states for electrical machine systems. This method allows the estimation of variables that are difficult to access or that are simply impossible to measure. Thus, as compared with a full-order sliding mode observer, in order to reduce the execution time of the estimation, a reduced-order discrete-time Extended sliding mode observer is proposed for on-line estimation of rotor flux, speed and rotor resistance in an induction motor using a robust feedback linearization control. Simulations results on Matlab-Simulink environment for a 1.8 kW induction motor are presented to prove the effectiveness and high robustness of the proposed nonlinear control and observer against modeling uncertainty and measurement noise.
文摘In this paper,an integrated estimation guidance and control(IEGC)system is designed based on the command filtered backstepping approach for circular field-of-view(FOV)strapdown missiles.The threedimensional integrated estimation guidance and control nonlinear model with limited actuator deflection angle is established considering the seeker's FOV constraint.The boundary time-varying integral barrier Lyapunov function(IBLF)is employed in backstepping design to constrain the body line-of-sight(BLOS)in IEGC system to fit a circular FOV.Then,the nonlinear adaptive controller is designed to estimate the changing aerodynamic parameters.The generalized extended state observer(GESO)is designed to estimate the acceleration of the maneuvering targets and the unmatched time-varying disturbances for improving tracking accuracy.Furthermore,the command filters are used to solve the"differential expansion"problem during the backstepping design.The Lyapunov theory is used to prove the stability of the overall closed-loop IEGC system.Finally,the simulation results validate the integrated system's effectiveness,achieving high accuracy strikes against maneuvering targets.
文摘In this paper,an integrated guidance and control method based on an adaptive path-following controller is proposed to control a spin-stabilized projectile with only translational motion information under the constraint of an actuator,uncertainties in aerodynamic parameters and measurements,and control system complexity.Owing to the fairly high rotation speed,the dynamic model of this missile is strongly nonlinear,uncertain and coupled in pitch,yaw and roll channels.A theoretical equivalent resultant force and uncertainty compensation method are comprehensively used to realize decoupling of pitch and yaw.In response to the strong nonlinear and time-varying characteristics of the dynamic system,the quasi-linear model whose parameters are obtained by interpolation of points selected as the segmentation points in the trajectory envelope,is used for calculation in each step.To cope with the system uncertainty caused by model approximation,parameter uncertainty and ballistic interference,an extended state estimator is used to compensate the output feedback according to the test ballistic angle.In order to improve the tracking efficiency and ensure the tracking error convergence with only translational motion information,the virtual guide point,whose derivative is deduced according to the Lyapunov principle,is calculated in real time according to the projection relationship between the real-time position and the reference trajectory,and a virtual line-of-sight angle and the backstepping method are used for the design of the guidance and control system.In order to avoid the influence of control input saturation on the guidance and control performance due to the actuator limitation and improve the robustness of the system,an anti-saturation compensator is designed according to the two-step method.The feasibility and effectiveness of the path-following controller is verified through closed-loop flight simulations with measurement,control,and condition uncertainties.The results indicate that the designed controller can converge to the reference path and evidently decrease the distance between the impact point and target under different uncertainties.
基金Supported by National Key R&D Program of China (Grant No.2018YFB2000702)National Natural Science Foundation of China (Grant No.52075262)Fok Ying-Tong Education Foundation of China (Grant No.171044)。
文摘A winding system is a time-varying system that considers complex nonlinear characteristics,and how to control the stability of the winding tension during the winding process is the primary problem that has hindered development in this field in recent years.Many nonlinear factors affect the tension in the winding process,such as friction,structured uncertainties,unstructured uncertainties,and external interference.These terms severely restrict the tension tracking performance.Existing tension control strategies are mainly based on the composite control of the tension and speed loops,and previous studies involve complex decoupling operations.Owing to the large number of calculations required for this method,it is inconvenient for practical engineering applications.To simplify the tension generation mechanism and the influence of the nonlinear characteristics of the winding system,a simpler nonlinear dynamic model of the winding tension was established.An adaptive method was applied to update the feedback gain of the continuous robust integral of the sign of the error(RISE).Furthermore,an extended state observer was used to estimate modeling errors and external disturbances.The model disturbance term can be compensated for in the designed RISE controller.The asymptotic stability of the system was proven according to the Lyapunov stability theory.Finally,a comparative analysis of the proposed nonlinear controller and several other controllers was performed.The results indicated that the control of the winding tension was significantly enhanced.
文摘The robotic airship can provide a promising aerostatic platform for many potential applications.These applications require a precise autonomous trajectory tracking control for airship.Airship has a nonlinear and uncertain dynamics.It is prone to wind disturbances that offer a challenge for a trajectory tracking control design.This paper addresses the airship trajectory tracking problem having time varying reference path.A lumped parameter estimation approach under model uncertainties and wind disturbances is opted against distributed parameters.It uses extended Kalman filter(EKF)for uncertainty and disturbance estimation.The estimated parameters are used by sliding mode controller(SMC)for ultimate control of airship trajectory tracking.This comprehensive algorithm,EKF based SMC(ESMC),is used as a robust solution to track airship trajectory.The proposed estimator provides the estimates of wind disturbances as well as model uncertainty due to the mass matrix variations and aerodynamic model inaccuracies.The stability and convergence of the proposed method are investigated using the Lyapunov stability analysis.The simulation results show that the proposed method efficiently tracks the desired trajectory.The method solves the stability,convergence,and chattering problem of SMC under model uncertainties and wind disturbances.
基金Project supported by the Natural Science Foundation of Fujian Province,China (Grant No.E0710018)
文摘This paper investigates the adaptive synchronization of hyperchaotic Lii systems based on the method of extended passive control. By combining the feedback control, the extended passive control method with two output variables is developed, which can synchronize hyperchaotic Lu systems asymptotically and globally more easily without knowing the bound of state of the hyperchaotic system. Adaptive laws are introduced to estimate the unknown parameters as well. Simulation results show the effectiveness and flexibility of the proposed control scheme.