Wavetet transform was used to analyze the scaling law of temperature data (passive scalar) in Rayleigh-Bénard convection flow from two aspects. The first one was to utilize the method of extended self similarity,...Wavetet transform was used to analyze the scaling law of temperature data (passive scalar) in Rayleigh-Bénard convection flow from two aspects. The first one was to utilize the method of extended self similarity, presented first by Benzi et al., to study the scaling exponent of temperature data. The obtained results show that the inertial range is much wider than that one determined directly from the conventional structure function, and find the obtained scaling exponent agrees well with the one obtained from the temperature data in an experiment of wind tunnel. The second one was that, by extending the formula which was proposed by A. Arneodo et al. for extracting the scaling exponent ζ(q) of velocity data to temperature data, a newly defined formula which is also based on wavelet transform, and can determine the scaling exponent ξ(q) of temperature data was proposed. The obtained results demonstrate that by using the method which is named as WTMM (wavelet transform maximum modulus) ξ(q) correctly can be extracted.展开更多
文摘Wavetet transform was used to analyze the scaling law of temperature data (passive scalar) in Rayleigh-Bénard convection flow from two aspects. The first one was to utilize the method of extended self similarity, presented first by Benzi et al., to study the scaling exponent of temperature data. The obtained results show that the inertial range is much wider than that one determined directly from the conventional structure function, and find the obtained scaling exponent agrees well with the one obtained from the temperature data in an experiment of wind tunnel. The second one was that, by extending the formula which was proposed by A. Arneodo et al. for extracting the scaling exponent ζ(q) of velocity data to temperature data, a newly defined formula which is also based on wavelet transform, and can determine the scaling exponent ξ(q) of temperature data was proposed. The obtained results demonstrate that by using the method which is named as WTMM (wavelet transform maximum modulus) ξ(q) correctly can be extracted.