In this paper, the problem of time-varying aerodynamic parameters identification under measurement noises is studied. By analyzing the key aerodynamic parameters that affect the aircraft control system, a system model...In this paper, the problem of time-varying aerodynamic parameters identification under measurement noises is studied. By analyzing the key aerodynamic parameters that affect the aircraft control system, a system model with extended states for identifying equivalent aerodynamic parameters is established, and error parameters are extended to the system state, avoiding the difficulty caused by the unknown dynamic in the system. Furthermore, an identification algorithm based on extended state Kalman filter is designed, and it is proved that the algorithm has quasi-consistency, thus, the estimation error can be evaluated in real time. Finally, the simulation results under typical flight scenarios show that the designed algorithm can accurately identify aerodynamic parameters, and has desired convergence speed and convergence precision.展开更多
基金supported by the National Natural Science Foundation of China(No.62122083)Youth Innovation Promotion Association,CAS.
文摘In this paper, the problem of time-varying aerodynamic parameters identification under measurement noises is studied. By analyzing the key aerodynamic parameters that affect the aircraft control system, a system model with extended states for identifying equivalent aerodynamic parameters is established, and error parameters are extended to the system state, avoiding the difficulty caused by the unknown dynamic in the system. Furthermore, an identification algorithm based on extended state Kalman filter is designed, and it is proved that the algorithm has quasi-consistency, thus, the estimation error can be evaluated in real time. Finally, the simulation results under typical flight scenarios show that the designed algorithm can accurately identify aerodynamic parameters, and has desired convergence speed and convergence precision.