In this paper, the extended symmetry transformation of (3+1)-dimensional (3D) generalized nonlinear Schrodinger (NLS) equations with variable coefficients is investigated by using the extended symmetry approach...In this paper, the extended symmetry transformation of (3+1)-dimensional (3D) generalized nonlinear Schrodinger (NLS) equations with variable coefficients is investigated by using the extended symmetry approach and symbolic computation. Then based on the extended symmetry, some 3D variable coefficient NLS equations are reduced to other variable coefficient NLS equations or the constant coefficient 3D NLS equation. By using these symmetry transformations, abundant exact solutions of some 3D NLS equations with distributed dispersion, nonlinearity, and gain or loss are obtained from the constant coefficient 3D NLS equation.展开更多
The extended symmetry approach is used to study the general Korteweg-de Vries-type (KdV-type) equation. Several variable-coefficient equations are obtained. The solutions of these resulting equations can be construc...The extended symmetry approach is used to study the general Korteweg-de Vries-type (KdV-type) equation. Several variable-coefficient equations are obtained. The solutions of these resulting equations can be constructed by the solutions of original models if their solutions are well known, such as the standard constant coefficient KdV equation and the standard compound KdV--Burgers equation, and so on. Then any one of these variable-coefficient equations can be considered as an original model to obtain new variable-coefficient equations whose solutions can also be known by means of transformation relations between solutions of the resulting new variable-coefficient equations and the original equation.展开更多
In this paper, the extended symmetry of generalized variable-coeFficient Kadomtsev-Petviashvili (vcKP) equation is investigated by the extended symmetry group method with symbolic computation. Then on the basis of t...In this paper, the extended symmetry of generalized variable-coeFficient Kadomtsev-Petviashvili (vcKP) equation is investigated by the extended symmetry group method with symbolic computation. Then on the basis of the extended symmetry, we can establish relation among some different kinds of vcKP equations. Thus the exact solutions of these veKP equations can be constructed via the simple veKP equations or constant-coefficient KP equations.展开更多
We discuss symmetry flows of noncommutative Kadomtsev-Petviashvili (NCKP) hierarchy. An operatorbased formulation, alternative to the star-product approach of extended symmetry flows is presented. Noncommutative addit...We discuss symmetry flows of noncommutative Kadomtsev-Petviashvili (NCKP) hierarchy. An operatorbased formulation, alternative to the star-product approach of extended symmetry flows is presented. Noncommutative additional symmetry flows of the NCKP hierarchy are formulated. A rescaling symmetry flow which is associated with the rescaling of whole coordinates is introduced.展开更多
In this paper, the authors prove an analogue of Gibbons' conjecture for the extended fourth order Allen-Cahn equation in R^N, as well as Liouville type results for some solutions converging to the same value at in...In this paper, the authors prove an analogue of Gibbons' conjecture for the extended fourth order Allen-Cahn equation in R^N, as well as Liouville type results for some solutions converging to the same value at infinity in a given direction. The authors also prove a priori bounds and further one-dimensional symmetry and rigidity results for semilinear fourth order elliptic equations with more general nonlinearities.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 11041003)the Ningbo Natural Science Foundation, China (Grant No. 2009B21003)K.C. Wong Magna Fund in Ningbo University, China
文摘In this paper, the extended symmetry transformation of (3+1)-dimensional (3D) generalized nonlinear Schrodinger (NLS) equations with variable coefficients is investigated by using the extended symmetry approach and symbolic computation. Then based on the extended symmetry, some 3D variable coefficient NLS equations are reduced to other variable coefficient NLS equations or the constant coefficient 3D NLS equation. By using these symmetry transformations, abundant exact solutions of some 3D NLS equations with distributed dispersion, nonlinearity, and gain or loss are obtained from the constant coefficient 3D NLS equation.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10675065)the Scientific Research Fundof the Education Department of Zhejiang Province of China (Grant No. 20070979)
文摘The extended symmetry approach is used to study the general Korteweg-de Vries-type (KdV-type) equation. Several variable-coefficient equations are obtained. The solutions of these resulting equations can be constructed by the solutions of original models if their solutions are well known, such as the standard constant coefficient KdV equation and the standard compound KdV--Burgers equation, and so on. Then any one of these variable-coefficient equations can be considered as an original model to obtain new variable-coefficient equations whose solutions can also be known by means of transformation relations between solutions of the resulting new variable-coefficient equations and the original equation.
基金Supported by the National Natural Science Foundation of China under Grant No. 0735030Zhejiang Provincial Natural Science Foundations of China under Grant No. Y6090592+1 种基金National Basic Research Program of China (973 Program 2007CB814800)Ningbo Natural Science Foundation under Grant No. 2008A610017 and K.C. Wong Magna Fund in Ningbo University
文摘In this paper, the extended symmetry of generalized variable-coeFficient Kadomtsev-Petviashvili (vcKP) equation is investigated by the extended symmetry group method with symbolic computation. Then on the basis of the extended symmetry, we can establish relation among some different kinds of vcKP equations. Thus the exact solutions of these veKP equations can be constructed via the simple veKP equations or constant-coefficient KP equations.
文摘We discuss symmetry flows of noncommutative Kadomtsev-Petviashvili (NCKP) hierarchy. An operatorbased formulation, alternative to the star-product approach of extended symmetry flows is presented. Noncommutative additional symmetry flows of the NCKP hierarchy are formulated. A rescaling symmetry flow which is associated with the rescaling of whole coordinates is introduced.
基金carried out in the framework of the Labex Archimède(ANR-11-LABX-0033)the A*MIDEX project(ANR-11-IDEX-0001-02)+6 种基金funded by the "Investissements d’Avenir" French Government program managed by the French National Research Agency(ANR)funding from the European Research Council under the European Union’s Seventh Framework Programme(FP/2007-2013)ERC Grant Agreement n.321186-ReaDiReaction-Diffusion Equations,Propagation and Modelling and from the ANR NONLOCAL project(ANR-14-CE25-0013)supported by INRIA-Team MEPHYSTOMIS F.4508.14(FNRS)PDR T.1110.14F(FNRS)ARC AUWB-2012-12/17-ULB1-IAPAS
文摘In this paper, the authors prove an analogue of Gibbons' conjecture for the extended fourth order Allen-Cahn equation in R^N, as well as Liouville type results for some solutions converging to the same value at infinity in a given direction. The authors also prove a priori bounds and further one-dimensional symmetry and rigidity results for semilinear fourth order elliptic equations with more general nonlinearities.