Transmit waveform optimization is critical to radar system performance. There have been a fruit of achievements about waveform design in recent years. However, most of the existing methods are based on the assumption ...Transmit waveform optimization is critical to radar system performance. There have been a fruit of achievements about waveform design in recent years. However, most of the existing methods are based on the assumption that radar is smart and the target is dumb, which is not always reasonable in the modern electronic warfare. This paper focuses on the waveform design for radar and the extended target in the environment of electronic warfare. Three different countermeasure models between smart radar and dumb target, smart target and dumb radar, smart radar and smart target are proposed. Taking the signal-to-interferenceplus-noise ratio(SINR) as the metric, optimized waveforms for the first two scenarios are achieved by the general water-filling method in the presence of clutter. For the last case, the equilibrium between smart radar and smart target in the presence of clutter is given mathematically and the optimized solution is achieved through a novel two-step water-filling method on the basis of minmax theory. Simulation results under different power constraints show the power allocation strategies of radar and target and the output SINRs are analyzed.展开更多
In this paper, we consider the problem of irregular shapes tracking for multiple extended targets by introducing the Gaussian surface matrix(GSM) into the framework of the random finite set(RFS) theory. The Gaussi...In this paper, we consider the problem of irregular shapes tracking for multiple extended targets by introducing the Gaussian surface matrix(GSM) into the framework of the random finite set(RFS) theory. The Gaussian surface function is constructed first by the measurements, and it is used to define the GSM via a mapping function. We then integrate the GSM with the probability hypothesis density(PHD) filter, the Bayesian recursion formulas of GSM-PHD are derived and the Gaussian mixture implementation is employed to obtain the closed-form solutions. Moreover, the estimated shapes are designed to guide the measurement set sub-partition, which can cope with the problem of the spatially close target tracking. Simulation results show that the proposed algorithm can effectively estimate irregular target shapes and exhibit good robustness in cross extended target tracking.展开更多
Adjusting radar transmitted waveform to its environment is one of the most important roles in cognitive radar;having the capability of updating transmitted waveforms in different applications is a key point. It has be...Adjusting radar transmitted waveform to its environment is one of the most important roles in cognitive radar;having the capability of updating transmitted waveforms in different applications is a key point. It has been shown in many studies that if the waveform is designed according to the target and clutter characteristics, the detection performance will improve significantly. The uncertainty of the target radar signatures decreases via maximizing MI and the probability of extended target detection is increases via maximizing SNR. In this paper, a waveform design approach based on maximizing both SNR and MI and with regard to target and clutter shape is presented. The detection performance for proposed waveform is compared with previous proposed waveforms. The present paper compares different scenarios of target and clutter and using the probability of detection as a cost function to investigate the advantages and disadvantages of each waveform in different scenarios which are mainly discussed in this text. The desired waveform for cognitive radar is selected based on simultaneously making compromises between SNR and MI, which plays an important role in cognitive radar systems and based on the assumption addressed in the text, the best waveform transmitted into the environment.展开更多
The data association problem of multiple extended target tracking is very challenging because each target may generate multiple measurements.Recently,the belief propagation based multiple target tracking algorithms wi...The data association problem of multiple extended target tracking is very challenging because each target may generate multiple measurements.Recently,the belief propagation based multiple target tracking algorithms with high efficiency have been a research focus.Different from the belief propagation based Extended Target tracking based on Belief Propagation(ET-BP)algorithm proposed in our previous work,a new graphical model formulation of data association for multiple extended target tracking is proposed in this paper.The proposed formulation can be solved by the Loopy Belief Propagation(LBP)algorithm.Furthermore,the simplified measurement set in the ET-BP algorithm is modified to improve tracking accuracy.Finally,experiment results show that the proposed algorithm has better performance than the ET-BP and joint probabilistic data association based on the simplified measurement set algorithms in terms of accuracy and efficiency.Additionally,the convergence of the proposed algorithm is verified in the simulations.展开更多
Extended target detection performance can be enhanced by using phase-modulated waveform designs in band-limited radar systems. Unlike waveforms designed for the total energy constraint, phase-modulated waveforms can f...Extended target detection performance can be enhanced by using phase-modulated waveform designs in band-limited radar systems. Unlike waveforms designed for the total energy constraint, phase-modulated waveforms can fully exploit the transmit power in the pulse duration, which is more suit- able for practical radar systems. An alternating iterative algorithm was developed to optimize the phase-modulated baseband waveform by maximizing the signal-to-noise ratio (SNR) at the receiver filter output. The output SNR increases continuously with the number of iterations and the algorithm is guaran- teed to converge. Simulations validate the effectiveness of this approach. The waveforms designed by this method outperform other commonly used waveforms for extended target detection.展开更多
This paper addresses the problem of joint tracking and classification(JTC) of a single extended target with a complex shape. To describe this complex shape, the spatial extent state is first modeled by star-convex sha...This paper addresses the problem of joint tracking and classification(JTC) of a single extended target with a complex shape. To describe this complex shape, the spatial extent state is first modeled by star-convex shape via a random hypersurface model(RHM), and then used as feature information for target classification. The target state is modeled by two vectors to alleviate the influence of the high-dimensional state space and the severely nonlinear observation model on target state estimation, while the Euclidean distance metric of the normalized Fourier descriptors is applied to obtain the analytical solution of the updated class probability. Consequently, the resulting method is called the "JTC-RHM method." Besides, the proposed JTC-RHM is integrated into a Bernoulli filter framework to solve the JTC of a single extended target in the presence of detection uncertainty and clutter, resulting in a JTC-RHM-Ber filter. Specifically, the recursive expressions of this filter are derived. Simulations indicate that:(1) the proposed JTC-RHM method can classify the targets with complex shapes and similar sizes more correctly, compared with the JTC method based on the random matrix model,(2) the proposed method performs better in target state estimation than the star-convex RHM based extended target tracking method,(3) the proposed JTC-RHM-Ber filter has a promising performance in state detection and estimation, and can achieve target classification correctly.展开更多
Based on the information theory,the performance of maneuvering target tracking can be improved by increasing the input information( observation vector).In this paper,the estimations of radial acceleration and radial v...Based on the information theory,the performance of maneuvering target tracking can be improved by increasing the input information( observation vector).In this paper,the estimations of radial acceleration and radial velocity obtained in the signal processing are introduced into the measurement vector by coordinate transformation.In order to solve the problem of high nonlinearity of the radial acceleration,radial velocity and the state vector,a new algorithm of multi-parameter sequential extended Kalman filter( MSEKF) is proposed.The tracking performance of this algorithm is tested and compared with the other tracking algorithms.It is shown that the proposed algorithm outperforms these algorithms in strong and weak maneuvering environments.展开更多
A multichannel noncoherent integration detection method based on high range resolution profile was presented in this paper. According to the property of the moment generating function, the distribution characteristics...A multichannel noncoherent integration detection method based on high range resolution profile was presented in this paper. According to the property of the moment generating function, the distribution characteristics of the noncoherent integrated signals with or without target presence were derived under the circumstance with noncorrelated Gaussian distribution noises. The loss of noncoherent integration was due to improper selection of integration range of cell numbers. A multi channel noncoherent integration detection scheme where the integration number in each channel va ries was proposed to solve this problem. The quality of this method for detection of various targets was evaluated. A comparison of fixed integration range cell number detection and multichannel inte gration detection for a high range resolution profile was presented. Simulation results indicated that the principle of the method was correct and performed well for unknown physical dimension targets. The method required little prior knowledge about target and was convenient for practical implementa tion.展开更多
基金supported by the National Natural Science Foundation of China(61302153)the Aeronautical Science Foundation of China(20160196001)
文摘Transmit waveform optimization is critical to radar system performance. There have been a fruit of achievements about waveform design in recent years. However, most of the existing methods are based on the assumption that radar is smart and the target is dumb, which is not always reasonable in the modern electronic warfare. This paper focuses on the waveform design for radar and the extended target in the environment of electronic warfare. Three different countermeasure models between smart radar and dumb target, smart target and dumb radar, smart radar and smart target are proposed. Taking the signal-to-interferenceplus-noise ratio(SINR) as the metric, optimized waveforms for the first two scenarios are achieved by the general water-filling method in the presence of clutter. For the last case, the equilibrium between smart radar and smart target in the presence of clutter is given mathematically and the optimized solution is achieved through a novel two-step water-filling method on the basis of minmax theory. Simulation results under different power constraints show the power allocation strategies of radar and target and the output SINRs are analyzed.
基金supported by the National Natural Science Foundation of China(6130501761304264+1 种基金61402203)the Natural Science Foundation of Jiangsu Province(BK20130154)
文摘In this paper, we consider the problem of irregular shapes tracking for multiple extended targets by introducing the Gaussian surface matrix(GSM) into the framework of the random finite set(RFS) theory. The Gaussian surface function is constructed first by the measurements, and it is used to define the GSM via a mapping function. We then integrate the GSM with the probability hypothesis density(PHD) filter, the Bayesian recursion formulas of GSM-PHD are derived and the Gaussian mixture implementation is employed to obtain the closed-form solutions. Moreover, the estimated shapes are designed to guide the measurement set sub-partition, which can cope with the problem of the spatially close target tracking. Simulation results show that the proposed algorithm can effectively estimate irregular target shapes and exhibit good robustness in cross extended target tracking.
文摘Adjusting radar transmitted waveform to its environment is one of the most important roles in cognitive radar;having the capability of updating transmitted waveforms in different applications is a key point. It has been shown in many studies that if the waveform is designed according to the target and clutter characteristics, the detection performance will improve significantly. The uncertainty of the target radar signatures decreases via maximizing MI and the probability of extended target detection is increases via maximizing SNR. In this paper, a waveform design approach based on maximizing both SNR and MI and with regard to target and clutter shape is presented. The detection performance for proposed waveform is compared with previous proposed waveforms. The present paper compares different scenarios of target and clutter and using the probability of detection as a cost function to investigate the advantages and disadvantages of each waveform in different scenarios which are mainly discussed in this text. The desired waveform for cognitive radar is selected based on simultaneously making compromises between SNR and MI, which plays an important role in cognitive radar systems and based on the assumption addressed in the text, the best waveform transmitted into the environment.
基金supported by the National Natural Science Foundation of China(No.61871301)National Natural Science Foundation of Shaanxi Province,China(No.2018JQ6059)Postdoctoral Science Foundation of China(No.2018M633470)。
文摘The data association problem of multiple extended target tracking is very challenging because each target may generate multiple measurements.Recently,the belief propagation based multiple target tracking algorithms with high efficiency have been a research focus.Different from the belief propagation based Extended Target tracking based on Belief Propagation(ET-BP)algorithm proposed in our previous work,a new graphical model formulation of data association for multiple extended target tracking is proposed in this paper.The proposed formulation can be solved by the Loopy Belief Propagation(LBP)algorithm.Furthermore,the simplified measurement set in the ET-BP algorithm is modified to improve tracking accuracy.Finally,experiment results show that the proposed algorithm has better performance than the ET-BP and joint probabilistic data association based on the simplified measurement set algorithms in terms of accuracy and efficiency.Additionally,the convergence of the proposed algorithm is verified in the simulations.
基金Supported by the National Natural Science Foundation of China(No. 60901057)the National Key Basic Research and Devel-opment (973) Program of China (No. 2010CB731901)
文摘Extended target detection performance can be enhanced by using phase-modulated waveform designs in band-limited radar systems. Unlike waveforms designed for the total energy constraint, phase-modulated waveforms can fully exploit the transmit power in the pulse duration, which is more suit- able for practical radar systems. An alternating iterative algorithm was developed to optimize the phase-modulated baseband waveform by maximizing the signal-to-noise ratio (SNR) at the receiver filter output. The output SNR increases continuously with the number of iterations and the algorithm is guaran- teed to converge. Simulations validate the effectiveness of this approach. The waveforms designed by this method outperform other commonly used waveforms for extended target detection.
基金Project supported by the National Natural Science Foundation of China (No. 61471370)。
文摘This paper addresses the problem of joint tracking and classification(JTC) of a single extended target with a complex shape. To describe this complex shape, the spatial extent state is first modeled by star-convex shape via a random hypersurface model(RHM), and then used as feature information for target classification. The target state is modeled by two vectors to alleviate the influence of the high-dimensional state space and the severely nonlinear observation model on target state estimation, while the Euclidean distance metric of the normalized Fourier descriptors is applied to obtain the analytical solution of the updated class probability. Consequently, the resulting method is called the "JTC-RHM method." Besides, the proposed JTC-RHM is integrated into a Bernoulli filter framework to solve the JTC of a single extended target in the presence of detection uncertainty and clutter, resulting in a JTC-RHM-Ber filter. Specifically, the recursive expressions of this filter are derived. Simulations indicate that:(1) the proposed JTC-RHM method can classify the targets with complex shapes and similar sizes more correctly, compared with the JTC method based on the random matrix model,(2) the proposed method performs better in target state estimation than the star-convex RHM based extended target tracking method,(3) the proposed JTC-RHM-Ber filter has a promising performance in state detection and estimation, and can achieve target classification correctly.
基金National Natural Science Foundations of China(Nos.61531020,61471383)
文摘Based on the information theory,the performance of maneuvering target tracking can be improved by increasing the input information( observation vector).In this paper,the estimations of radial acceleration and radial velocity obtained in the signal processing are introduced into the measurement vector by coordinate transformation.In order to solve the problem of high nonlinearity of the radial acceleration,radial velocity and the state vector,a new algorithm of multi-parameter sequential extended Kalman filter( MSEKF) is proposed.The tracking performance of this algorithm is tested and compared with the other tracking algorithms.It is shown that the proposed algorithm outperforms these algorithms in strong and weak maneuvering environments.
基金Supported by the Advanced Research Foundation of General Armament Department(51307020101)
文摘A multichannel noncoherent integration detection method based on high range resolution profile was presented in this paper. According to the property of the moment generating function, the distribution characteristics of the noncoherent integrated signals with or without target presence were derived under the circumstance with noncorrelated Gaussian distribution noises. The loss of noncoherent integration was due to improper selection of integration range of cell numbers. A multi channel noncoherent integration detection scheme where the integration number in each channel va ries was proposed to solve this problem. The quality of this method for detection of various targets was evaluated. A comparison of fixed integration range cell number detection and multichannel inte gration detection for a high range resolution profile was presented. Simulation results indicated that the principle of the method was correct and performed well for unknown physical dimension targets. The method required little prior knowledge about target and was convenient for practical implementa tion.