期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
The Extension Rate of the Medial Collateral Ligament of the Knee Joint during the Valgus Stress Test: Two Case Reports
1
作者 Yuichi Takata Koji Iwamoto +1 位作者 Sadanori Oshiro Mitsuhiro Iijima 《Open Journal of Therapy and Rehabilitation》 2021年第1期1-9,共9页
<span style="font-family:Verdana;">This study aimed to evaluate the influence of measuring the length of the medial collateral ligament (MCL) to compare the MCL burden when the knee joint is placed und... <span style="font-family:Verdana;">This study aimed to evaluate the influence of measuring the length of the medial collateral ligament (MCL) to compare the MCL burden when the knee joint is placed under valgus stress in the open and closed and closed kinetic chain.</span><b> </b><span style="font-family:Verdana;">Two examiners conducted the examination. The MCL length was measured using ultrasonography. Two subjects were measured in unload bearing and load-bearing positions, with and without valgus stress test at the knee joint extension and 30<span style="white-space:nowrap;">°</span> flexion, under eight different measurement conditions. The MCL of the subject was delineated in the longitudinal direction using an ultrasound system. The attachment points of the medial femoral and tibial condyle of the MCL were identified, and the ligament length was measured. The MCL rate before and after the valgus stress test in the loading and unloading positions was calculated.</span><b> </b><span style="font-family:Verdana;">The MCL length increased by an average of 8.9% when the external stress test was performed in the non-weight bearing and knee extension positions and by an average of 17.0% when external stress was applied in the non-weight bearing and knee flexion positions. The MCL length increased by an average of 12.2% when the external stress test was performed in the load-bearing and knee extension positions and an average of 8.9% when the valgus stress test was applied in load-bearing and knee flexion positions. In conclusion, the effect of valgus stress on the MCL differs between load-bearing and non-load-bearing positions. It is considered that the dynamic stabilization mechanism works in the knee joint flexion position in the load position and works simultaneously as the static stabilization mechanism, which limits the knee joint valgus and reduces the extension rate of MCL. Therefore, this study reconsiders the shifting of traditional therapy from open kinetic chain to close kinetic chain.</span> 展开更多
关键词 Medial Collateral Ligament Valgus Stress Test Extension rate
下载PDF
Yitong Graben:a Typical Petroliferous Strike-Slip Fault Depression of China
2
作者 Chen Quanmao Zhang GuangyaChina University of Geosciences , Wuhan 430074 《Journal of Earth Science》 SCIE CAS CSCD 1993年第1期88-93,共6页
Although Yitong graben appears in a rift basin region of Eastern China , it is really not a rift basin but a strike-slip depression . Its features are as follows : (1 ) graben is controlled by both east and west bound... Although Yitong graben appears in a rift basin region of Eastern China , it is really not a rift basin but a strike-slip depression . Its features are as follows : (1 ) graben is controlled by both east and west boundary fauns without any relationship with Mono discontinuity figure ; (2 ) there is no alkalic or calc-alkalic igneous rocks in the layer of early and middle period of graben development ; (3 )west boundary fault is a typical strike-slip fault with some what of arc along the strike , and the fault depression locates in the concave of the arc . East boundary fault is a syndepostional normal fault with translational motion ; (4 ) graben has a long and narrow shape with four sags and three bulges alternating each other ; (5 ) the cross section of graben is asymmetric , high in the east and low in the west ; (6 )the lithofacies changes are quite fast in the cross section . Unconfonnities exist in some area of graben ; (7 )the angle between fault 2 and west boundary fault is a acute angle directing the opposite trend of the west side motion of boundary fault ; (8 )the extensional rate of graben is about 12% , less than the rate in Huabei (19%) and Liaohe (20 %)rift basin. 展开更多
关键词 DEPRESSION strike-slip fault fault sag fault bulge extensional rate.
下载PDF
The decadally modulating eddy field in the upstream Kuroshio Extension and its related mechanisms 被引量:2
3
作者 WANG Shihong LIU Zhiliang +1 位作者 PANG Chongguang LIU Huiqing 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2016年第5期9-17,共9页
Both the level of the high-frequency eddy kinetic energy(HF-EKE) and the energy-containing scale in the upstream Kuroshio Extension(KE) undergo a well-defined decadal modulation, which correlates well with the dec... Both the level of the high-frequency eddy kinetic energy(HF-EKE) and the energy-containing scale in the upstream Kuroshio Extension(KE) undergo a well-defined decadal modulation, which correlates well with the decadal KE path variability. The HF-EKE level and the energy-containing scales will increase with unstable KE path and decrease with stable KE path. Also the mesoscale eddies are a little meridionally elongated in the stable state, while they are much zonally elongated in the unstable state. The local baroclinic instability and the barotropic instability associated with the decadal modulation of HF-EKE have been investigated. The results show that the baroclinic instability is stronger in the stable state than that in the unstable state, with a shorter characteristic temporal scale and a larger characteristic spatial scale. Meanwhile, the regional-averaged barotropic conversion rate is larger in the unstable state than that in the stable state. The results also demonstrate that the baroclinic instability is not the dominant mechanism influencing the decadal modulation of the mesoscale eddy field, while the barotropic instability makes a positive contribution to the decadal modulation. 展开更多
关键词 Kuroshio Extension mesoscale eddy decadal modulation baroclinic instability barotropic energy conversion rate nonlinear eddy-eddy interaction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部