The axial bearing capacity of prefabricated composite walls composed of inner and outer concrete wythes,expandable polystyrene(EPS)boards and steel sleeve connectors is investigated.An experimental study on the axial ...The axial bearing capacity of prefabricated composite walls composed of inner and outer concrete wythes,expandable polystyrene(EPS)boards and steel sleeve connectors is investigated.An experimental study on the axial bearing capacity of four prefabricated composite walls after fire treatment is carried out.Two of the prefabricated composite walls are normal-temperature specimens,and the others are treated with fire.The damage modes and crack development are observed,and the axial bearing capacity,lateral deformation of the specimens,and the concrete and reinforcing bar strain are tested.The results show that the ultimate bearing capacity of specimens after a fire is less than that of normal-temperature specimens;when the insulation board thicknesses are 40 mm and 60 mm,the decrease amplitudes are 20.8%and 16.8%,respectively.The maximum lateral deformation of specimens after a fire is greater than that of normal-temperature specimens,and under the same level of load,the lateral deformation increases as the insulation board thickness increases.Moreover,the strain values of the concrete and reinforcing bars of specimens after a fire are greater than those of normal-temperature specimens,and the strain values increase as the thickness of insulation board increases.展开更多
Solar-powered interfacial evaporation is an energy-efficient solution for water scarcity.It requires solar absorbers to facilitate upward water transport and limit the heat to the surface for efficient evaporation.Fur...Solar-powered interfacial evaporation is an energy-efficient solution for water scarcity.It requires solar absorbers to facilitate upward water transport and limit the heat to the surface for efficient evaporation.Furthermore,downward salt ion transport is also desired to prevent salt accumulation.However,achieving simultaneously fast water uptake,downward salt transport,and heat localization is challenging due to highly coupled water,mass,and thermal transport.Here,we develop a structurally graded aerogel inspired by tree transport systems to collectively optimize water,salt,and thermal transport.The arched aerogel features root-like,fan-shaped microchannels for rapid water uptake and downward salt diffusion,and horizontally aligned pores near the surface for heat localization through maximizing solar absorption and minimizing conductive heat loss.These structural characteristics gave rise to consistent evaporation rates of 2.09 kg m^(-2) h^(-1) under one-sun illumination in a 3.5 wt%NaCl solution for 7 days without degradation.Even in a high-salinity solution of 20 wt%NaCl,the evaporation rates maintained stable at 1.94 kg m^(-2) h^(-1) for 8 h without salt crystal formation.This work offers a novel microstructural design to address the complex interplay of water,salt,and thermal transport.展开更多
Ceramic fibrous aerogels are highly desirable for thermal management materials due to their high porosity,excellent elasticity,thermal conductivity,and good thermal resistance.However,the fabrication of nanofibrous ae...Ceramic fibrous aerogels are highly desirable for thermal management materials due to their high porosity,excellent elasticity,thermal conductivity,and good thermal resistance.However,the fabrication of nanofibrous aerogel with super-elasticity and good shape retention at the same time has remained challenging.To meet the requirements,a novel anisotropy nanofibrous-granular aerogel with a quasi-layered multi-arch-like and hierarchical-cellular structure is designed and prepared by vacuum-filtration-assisted freeze-drying and sintering.The quasi-layered multi-arch and flexible nanofibers endowed the aerogels with excellent mechanical robustness(ultimate stress up to 60 kPa with strain 60%)and super-elasticity with recoverable compression strain up to 60%.The introduced SiO_(2) aerogel nanoparticles and nanofibers are assembled into an arch-like structure and become the connection point of adjacent nanofibers,which endows low thermal conductivity(0.024 mW/(m·K))of composite aerogel.This novel strategy provides a fresh perspective for the preparation of nanofibrous aerogel with robust mechanical in thermal insulation and other fields.展开更多
This paper mainly uses the method of numerical simulation, and study thermal insulation and energy saving characteristics on the exterior walls of the building and analyze the optimal layout scheme of building exterio...This paper mainly uses the method of numerical simulation, and study thermal insulation and energy saving characteristics on the exterior walls of the building and analyze the optimal layout scheme of building exterior wall and thermal insulation system. Finally, the paper study optimal thickness of insulation materials. The paper elaborate scheme of the existing building energy-saving for exterior wall and the scope of application, the system structure and the construction technology. The results showed that: extruded benzene board that can be used for exterior insulation, frame structure filled with wall preferred ceramsite hollow block. The paper can provides reference selection of insulation for building external wall energy-saving transformation scheme.展开更多
In order to solve the problem of poor thermal insulation in the current wood-plastic building,two kinds of structural wood wall integrated with wood plastic composite(WPC)are designed,and the thermal insulation perfor...In order to solve the problem of poor thermal insulation in the current wood-plastic building,two kinds of structural wood wall integrated with wood plastic composite(WPC)are designed,and the thermal insulation performances of the walls are studied.The results show that the WPC integrated wall with frame-shear structure has a good stability,and the excellent performance of the WPC can be fully realized.Wall studs and wall panels are important factors affecting the thermal performance of the walls.Wood plastic materials can meet the thermal performance requirements of the walls.The single-layer frame walls and double-layer frame walls integrated with the WPC both have a good thermal performance.According to‘Design Standard for Energy Efficiency of Public Buildings(GB 50189-2015)’,the heat transfer coefficient of the single-layer frame wall integrated with 20 mm thick WPC wall boards and WPC wall studs is 0.414 W/(m^(2)•K),which can meet the standard of wall thermal levelⅡt and is suitable for cold areas.The heat transfer coefficient of the double-layer frame wall integrated with 50 mm thick WPC wall panel and WPC wall studs is 0.207 W/(m^(2)•K),which can meet the standard of wall thermal levelⅠt and is suitable for severe cold areas.展开更多
Reflective and insulative composite coatings are a new energy-saving material with high solar reflectance and extremely low thermal conductivity for buildings.The optimization and impact of high solar reflectance and ...Reflective and insulative composite coatings are a new energy-saving material with high solar reflectance and extremely low thermal conductivity for buildings.The optimization and impact of high solar reflectance and low thermal conductivity on the insulating capacity of walls remain uncertain.This work investigates the dynamic thermal performance and energy efficiency of a reflective and insulative composite coating in regions with hot summer and warm winter.A simplified thermal resistance-heat capacitance model of an exterior building wall is established to predict thermal performance.The dynamic temperature and heat flow of the wall are predicted to reduce heat loss through the interior surface of the wall and compared to the conventional coating.The specific impact of the thermal conductivity and solar reflectance of the coating on the heat loss is further investigated to minimize heat loss of the wall.This research shows that the composite coating shows better performance on adjusting outdoor climate change than the other coating.Compared with cement,it reduces the maximum temperature of the exterior surface of the wall by 7.45°C,and the heat loss through the interior surface of the wall by 38%.The heat loss is reduced with the increase of solar reflectance and the reduction of thermal conductivity.The results can provide a useful reference and guidance for the application of reflective and insulative composite coating on building exterior wall to promote their energy-saving use on building envelopes.展开更多
基金The National Key Research and Development Program of China(No.2016YFC0701703)the Natural Science Foundation of Higher Education Institutions of Jiangsu Province(No.2016TM045J)the Scientific Innovation Research of Graduate Students in Jiangsu Province(No.KYLX_0151)
文摘The axial bearing capacity of prefabricated composite walls composed of inner and outer concrete wythes,expandable polystyrene(EPS)boards and steel sleeve connectors is investigated.An experimental study on the axial bearing capacity of four prefabricated composite walls after fire treatment is carried out.Two of the prefabricated composite walls are normal-temperature specimens,and the others are treated with fire.The damage modes and crack development are observed,and the axial bearing capacity,lateral deformation of the specimens,and the concrete and reinforcing bar strain are tested.The results show that the ultimate bearing capacity of specimens after a fire is less than that of normal-temperature specimens;when the insulation board thicknesses are 40 mm and 60 mm,the decrease amplitudes are 20.8%and 16.8%,respectively.The maximum lateral deformation of specimens after a fire is greater than that of normal-temperature specimens,and under the same level of load,the lateral deformation increases as the insulation board thickness increases.Moreover,the strain values of the concrete and reinforcing bars of specimens after a fire are greater than those of normal-temperature specimens,and the strain values increase as the thickness of insulation board increases.
基金financially supported by the Research Grants Council of Hong Kong SAR(16200720)Environment and Conservation Fund of Hong Kong SAR(Project No.21/2022)+2 种基金Young Scientists Fund of National Natural Science Foundation of China(Grant No.52303106)Research Institute for Advanced Manufucturing(Project No.CD8R)the startup fund for new recruits of PolyU(Project Nos.P0038855 and P0038858)。
文摘Solar-powered interfacial evaporation is an energy-efficient solution for water scarcity.It requires solar absorbers to facilitate upward water transport and limit the heat to the surface for efficient evaporation.Furthermore,downward salt ion transport is also desired to prevent salt accumulation.However,achieving simultaneously fast water uptake,downward salt transport,and heat localization is challenging due to highly coupled water,mass,and thermal transport.Here,we develop a structurally graded aerogel inspired by tree transport systems to collectively optimize water,salt,and thermal transport.The arched aerogel features root-like,fan-shaped microchannels for rapid water uptake and downward salt diffusion,and horizontally aligned pores near the surface for heat localization through maximizing solar absorption and minimizing conductive heat loss.These structural characteristics gave rise to consistent evaporation rates of 2.09 kg m^(-2) h^(-1) under one-sun illumination in a 3.5 wt%NaCl solution for 7 days without degradation.Even in a high-salinity solution of 20 wt%NaCl,the evaporation rates maintained stable at 1.94 kg m^(-2) h^(-1) for 8 h without salt crystal formation.This work offers a novel microstructural design to address the complex interplay of water,salt,and thermal transport.
基金supported by the National Natural Science Foundation of China(No.U2167214)the Science and Technology International Cooperation Project of Jiangsu(No.BZ2021055)+1 种基金the Industry Foresight and Key Core Technology Competition Project of Jiangsu(No.BE2022147)the Overseas Professor Project(No.G2022181024L).
文摘Ceramic fibrous aerogels are highly desirable for thermal management materials due to their high porosity,excellent elasticity,thermal conductivity,and good thermal resistance.However,the fabrication of nanofibrous aerogel with super-elasticity and good shape retention at the same time has remained challenging.To meet the requirements,a novel anisotropy nanofibrous-granular aerogel with a quasi-layered multi-arch-like and hierarchical-cellular structure is designed and prepared by vacuum-filtration-assisted freeze-drying and sintering.The quasi-layered multi-arch and flexible nanofibers endowed the aerogels with excellent mechanical robustness(ultimate stress up to 60 kPa with strain 60%)and super-elasticity with recoverable compression strain up to 60%.The introduced SiO_(2) aerogel nanoparticles and nanofibers are assembled into an arch-like structure and become the connection point of adjacent nanofibers,which endows low thermal conductivity(0.024 mW/(m·K))of composite aerogel.This novel strategy provides a fresh perspective for the preparation of nanofibrous aerogel with robust mechanical in thermal insulation and other fields.
文摘This paper mainly uses the method of numerical simulation, and study thermal insulation and energy saving characteristics on the exterior walls of the building and analyze the optimal layout scheme of building exterior wall and thermal insulation system. Finally, the paper study optimal thickness of insulation materials. The paper elaborate scheme of the existing building energy-saving for exterior wall and the scope of application, the system structure and the construction technology. The results showed that: extruded benzene board that can be used for exterior insulation, frame structure filled with wall preferred ceramsite hollow block. The paper can provides reference selection of insulation for building external wall energy-saving transformation scheme.
文摘In order to solve the problem of poor thermal insulation in the current wood-plastic building,two kinds of structural wood wall integrated with wood plastic composite(WPC)are designed,and the thermal insulation performances of the walls are studied.The results show that the WPC integrated wall with frame-shear structure has a good stability,and the excellent performance of the WPC can be fully realized.Wall studs and wall panels are important factors affecting the thermal performance of the walls.Wood plastic materials can meet the thermal performance requirements of the walls.The single-layer frame walls and double-layer frame walls integrated with the WPC both have a good thermal performance.According to‘Design Standard for Energy Efficiency of Public Buildings(GB 50189-2015)’,the heat transfer coefficient of the single-layer frame wall integrated with 20 mm thick WPC wall boards and WPC wall studs is 0.414 W/(m^(2)•K),which can meet the standard of wall thermal levelⅡt and is suitable for cold areas.The heat transfer coefficient of the double-layer frame wall integrated with 50 mm thick WPC wall panel and WPC wall studs is 0.207 W/(m^(2)•K),which can meet the standard of wall thermal levelⅠt and is suitable for severe cold areas.
基金the National Natural Science Foundation of China(No.52078144)the National Natural Science Foundation of China(No.52108073)the Innovation Research for Postgraduates of Guangzhou University(No.2021GDJC-D15).
文摘Reflective and insulative composite coatings are a new energy-saving material with high solar reflectance and extremely low thermal conductivity for buildings.The optimization and impact of high solar reflectance and low thermal conductivity on the insulating capacity of walls remain uncertain.This work investigates the dynamic thermal performance and energy efficiency of a reflective and insulative composite coating in regions with hot summer and warm winter.A simplified thermal resistance-heat capacitance model of an exterior building wall is established to predict thermal performance.The dynamic temperature and heat flow of the wall are predicted to reduce heat loss through the interior surface of the wall and compared to the conventional coating.The specific impact of the thermal conductivity and solar reflectance of the coating on the heat loss is further investigated to minimize heat loss of the wall.This research shows that the composite coating shows better performance on adjusting outdoor climate change than the other coating.Compared with cement,it reduces the maximum temperature of the exterior surface of the wall by 7.45°C,and the heat loss through the interior surface of the wall by 38%.The heat loss is reduced with the increase of solar reflectance and the reduction of thermal conductivity.The results can provide a useful reference and guidance for the application of reflective and insulative composite coating on building exterior wall to promote their energy-saving use on building envelopes.