期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Numerical Analysis of Influencing Factors on Temperature Field and Airflow Distribution of the Displacement Ventilation System 被引量:1
1
作者 那艳玲 邢金城 +1 位作者 涂光备 于松波 《Transactions of Tianjin University》 EI CAS 2005年第1期66-72,共7页
Indoor air quality and thermal comfort are important features of indoor environment. In this paper, a numerical simulation based on the k-ε model of CFD is used to analyze factors such as loading, exterior-protected ... Indoor air quality and thermal comfort are important features of indoor environment. In this paper, a numerical simulation based on the k-ε model of CFD is used to analyze factors such as loading, exterior-protected construction, blowing-in rate that play an important role in the temperature field and airflow field of the displacement ventilation system. Exterior-protected construction has little influence on indoor temperature distribution of displacement ventilation systems and the influence is limited only in a small area near the external wall when the indoor heat source is the main cooling load.The height of a room has little influence on indoor temperature field, and the temperature gradient of active region is basically unchanged. In the system combined with a displacement ventilation system and a cooling system, the height also has little influence. When the cooling load is high,the indoor heat source creates a strong convective plume, which will make the average indoor air age lower, the ventilation efficiency higher and the elimination of pollutant easier. Air supply rate plays an important role in displacement ventilation systems. The increase of air supply rate that can be realized by increasing the air supply velocity and enlarging the area of air inlet will increase the mass capability of the system and diminish the vertical temperature gradient. From the comparison between simulations and experiments, it is concluded that this simulation are creditable. 展开更多
关键词 cooling load exterior-protected construction air supply rate CFD numerical simulation ENERGY-SAVING
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部