期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Cyber-Attack Detection System Using Late Fusion Aggregation Enabled Cyber-Net
1
作者 P.Shanmuga Prabha S.Magesh Kumar 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期3101-3119,共19页
Today,securing devices connected to the internet is challenging as security threats are generated through various sources.The protection of cyber-physical systems from external attacks is a primary task.The presented ... Today,securing devices connected to the internet is challenging as security threats are generated through various sources.The protection of cyber-physical systems from external attacks is a primary task.The presented method is planned on the prime motive of detecting cybersecurity attacks and their impacted parameters.The proposed architecture employs the LYSIS dataset and formulates Multi Variant Exploratory Data Analysis(MEDA)through Principle Component Analysis(PCA)and Singular Value Decompo-sition(SVD)for the extraction of unique parameters.The feature mappings are analyzed with Recurrent 2 Convolutional Neural Network(R2CNN)and Gradient Boost Regression(GBR)to identify the maximum correlation.Novel Late Fusion Aggregation enabled with Cyber-Net(LFAEC)is the robust derived algorithm.The quantitative analysis uses predicted threat points with actual threat variables from which mean and difference vectors areevaluated.The performance of the presented system is assessed against the parameters such as Accuracy,Precision,Recall,and F1 Score.The proposed method outperformed by 98% to 100% in all quality measures compared to existing methods. 展开更多
关键词 external attacks cyber-physical systems principle component analysis singular value decomposition recurrent 2 convolutional neural network gradient boost regression
下载PDF
A time−space porosity computational model for concrete under sulfate attack
2
作者 Hui SONG Jiankang CHEN 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2023年第10期1571-1584,共14页
The deterioration of the microscopic pore structure of concrete under external sulfate attack(ESA)is a primary cause of degradation.Nevertheless,little effort has been invested in exploring the temporal and spatial de... The deterioration of the microscopic pore structure of concrete under external sulfate attack(ESA)is a primary cause of degradation.Nevertheless,little effort has been invested in exploring the temporal and spatial development of the porosity of concrete under ESA.This study proposes a mechanical–chemical model to simulate the spatiotemporal distribution of the porosity.A relationship between the corrosion damage and amount of ettringite is proposed based on the theory of volume expansion.In addition,the expansion strain at the macro-scale is obtained using a stress analysis model of composite concentric sphere elements and the micromechanical mean-field approach.Finally,considering the influence of corrosion damage and cement hydration on the diffusion of sulfate ions,the expansion deformation and porosity space−time distribution are obtained using the finite difference method.The results demonstrate that the expansion strains calculated using the suggested model agree well with previously reported experimental results.Moreover,the tricalcium aluminate concentration,initial elastic modulus of cement paste,corrosion damage,and continuous hydration of cement significantly affect concrete under ESA.The proposed model can forecast and assess the porosity of concrete covers and provide a credible approach for determining the residual life of concrete structures under ESA. 展开更多
关键词 expansion deformation POROSITY internal expansion stress external sulfate attack mechanical–chemical coupling model
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部