Removal of inorganic nitrogen (inorganic-N) from toilet wastewater, using a pilot-scale airlift external circulation membrane bioreactor (AEC-MBR) was studied. The results showed that the use of AEC-MBR with limit...Removal of inorganic nitrogen (inorganic-N) from toilet wastewater, using a pilot-scale airlift external circulation membrane bioreactor (AEC-MBR) was studied. The results showed that the use of AEC-MBR with limited addition of alkaline reagents and volumetric loading rates of inorganic-N of 0.19-0.40 kg inorganic-N/(m^3·d) helped achieve the desired nitrification and denitrification. Furthermore, the effects of pH and dissolved oxygen (DO) on inorganic-N removal were examined. Under the condition of MLSS at 1.56-2.35 g/L, BODs/ammonia nitrogen (NH4+-N) at 1.0, pH at 7.0-7.5, and DO at 1.0-2.0 mg/L, the removal efficiencies of NH4^+-N and inorganic-N were 91.5% and 70.0%, respectively, in the AEC-MBR. The cost of addition of alkaline reagent was approximately 0.5-1.5 RMB yuan/m^3, and the energy consumption was approximately 0.72 kWh/m^3 at the flux of 8 L/(m^2-h).展开更多
The external loop airlift reactor(ELALR)is widely used for gasliquid reactions.It’s advantage of good heat and mass transfer rates compared to conventional bubble column reactors.In the case of fermentation applicati...The external loop airlift reactor(ELALR)is widely used for gasliquid reactions.It’s advantage of good heat and mass transfer rates compared to conventional bubble column reactors.In the case of fermentation application where a medium is highly viscous and coalescing in nature,internal in riser helps in the improvement of the interfacial area as well as in the reduction of liquidphase back mixing.The computational fluid dynamic(CFD)as a tool is used to design and scaleup of sectionalized external loop airlift reactor.The present work deals with computational fluid dynamics(CFD)techniques and experimental measurement of a gas holdup,liquid circulation velocity,liquid axial velocity,Sauter mean bubble diameter over a broad range of superficial gas velocity 0.0024≤UG≤0.0168 m s 1.The correlation has been made for bubble size distribution with specific power consumption for different plate configurations.The effects of an internal on different mass transfer models have been completed to assess their suitability.The predicted local mass transfer coefficient has been found higher in the sectionalized external loop airlift reactor than the conventional ELALR.展开更多
Hydrogen sulfide(H_(2)S)is a critical component of biogas formed under anaerobic conditions by sulfur and sulfate reducing bacteria from animal manure and renewable energy crops.H_(2)S causes high corrosion in equipme...Hydrogen sulfide(H_(2)S)is a critical component of biogas formed under anaerobic conditions by sulfur and sulfate reducing bacteria from animal manure and renewable energy crops.H_(2)S causes high corrosion in equipment,has a negative environmental impact,inhibits the biogas formation process and is furthermore odorous and toxic.Although several methods for internal and external desulfurization found their way into practice and had been explored at laboratory scale,no data were available on the performance of such methods in full scale practice,especially for an external fixed-bed trickling bioreactor(FBTB).The effects of temperature,pH and air ratio on H_(2)S removal efficiency(RE)were studied.The study was conducted at a research biogas plant with a given output of 96 m^(3) biogas per hour,and an H_(2)S concentration ranging between 500 ppm and 600 ppm(1 ppm=1 cm^(3)/m^(3))on average.The FBTB column has been designed to hold a packing volume of 2.21 m^(3) at a gas retention time of 84 seconds being loaded at an average of 32.88 g H_(2)S/(m^(3)·h).The highest H_(2)S RE of 98% was found at temperatures between 30℃ and 40℃.A major decline in RE to 21%-45%was observed at temperatures from 5℃ to 25℃.The results clearly showed a temperature optimum range for sulfate reducing bacteria.The results reveal that RE is little affected by different pH values and air ratios.During the experimental period,the practical suitability of the FBTB system could be proved while avoiding the disadvantages of internal biological desulfurization methods.展开更多
A novel full scale modified A2O (anoxic/anaerobic/aerobic/pre-anoxic)-membrane bioreactor (MBR) plant combined with the step feed strategy was operated to improve the biological nutrient removal (BNR) from low C...A novel full scale modified A2O (anoxic/anaerobic/aerobic/pre-anoxic)-membrane bioreactor (MBR) plant combined with the step feed strategy was operated to improve the biological nutrient removal (BNR) from low C/N ratio municipal wastewater in Southern China. Transformation of organic carbon, nitrogen and phosphorus, and membrane fouling were investigated. Experimental results for over four months demonstrated good efficiencies for chemical oxygen demand (COD) and NH4^+-N removal, with average values higher than 84.5%and 98.1%, re-spectively. A relatively higher total nitrogen (TN) removal efficiency (52.1%) was also obtained at low C/N ratio of 3.82, contributed by the configuration modification (anoxic zone before anaerobic zone) and the step feed with a distribution ratio of 1:1. Addition of sodium acetate into the anoxic zone as the external carbon source, with a theoretical amount of 31.3 mg COD per liter in influent, enhanced denitrification and the TN removal efficiency in-creased to 74.9%. Moreover, the total phosphate (TP) removal efficiency increased by 18.0%. It is suggested that the external carbon source is needed to improve the BNR performance in treating low C/N ratio municipal waste-water in the modified A^2O-MBR process.展开更多
基金Project supported by the Hi-Tech Research and Development Program (863) of China (No. 2002AA601220)
文摘Removal of inorganic nitrogen (inorganic-N) from toilet wastewater, using a pilot-scale airlift external circulation membrane bioreactor (AEC-MBR) was studied. The results showed that the use of AEC-MBR with limited addition of alkaline reagents and volumetric loading rates of inorganic-N of 0.19-0.40 kg inorganic-N/(m^3·d) helped achieve the desired nitrification and denitrification. Furthermore, the effects of pH and dissolved oxygen (DO) on inorganic-N removal were examined. Under the condition of MLSS at 1.56-2.35 g/L, BODs/ammonia nitrogen (NH4+-N) at 1.0, pH at 7.0-7.5, and DO at 1.0-2.0 mg/L, the removal efficiencies of NH4^+-N and inorganic-N were 91.5% and 70.0%, respectively, in the AEC-MBR. The cost of addition of alkaline reagent was approximately 0.5-1.5 RMB yuan/m^3, and the energy consumption was approximately 0.72 kWh/m^3 at the flux of 8 L/(m^2-h).
文摘The external loop airlift reactor(ELALR)is widely used for gasliquid reactions.It’s advantage of good heat and mass transfer rates compared to conventional bubble column reactors.In the case of fermentation application where a medium is highly viscous and coalescing in nature,internal in riser helps in the improvement of the interfacial area as well as in the reduction of liquidphase back mixing.The computational fluid dynamic(CFD)as a tool is used to design and scaleup of sectionalized external loop airlift reactor.The present work deals with computational fluid dynamics(CFD)techniques and experimental measurement of a gas holdup,liquid circulation velocity,liquid axial velocity,Sauter mean bubble diameter over a broad range of superficial gas velocity 0.0024≤UG≤0.0168 m s 1.The correlation has been made for bubble size distribution with specific power consumption for different plate configurations.The effects of an internal on different mass transfer models have been completed to assess their suitability.The predicted local mass transfer coefficient has been found higher in the sectionalized external loop airlift reactor than the conventional ELALR.
文摘Hydrogen sulfide(H_(2)S)is a critical component of biogas formed under anaerobic conditions by sulfur and sulfate reducing bacteria from animal manure and renewable energy crops.H_(2)S causes high corrosion in equipment,has a negative environmental impact,inhibits the biogas formation process and is furthermore odorous and toxic.Although several methods for internal and external desulfurization found their way into practice and had been explored at laboratory scale,no data were available on the performance of such methods in full scale practice,especially for an external fixed-bed trickling bioreactor(FBTB).The effects of temperature,pH and air ratio on H_(2)S removal efficiency(RE)were studied.The study was conducted at a research biogas plant with a given output of 96 m^(3) biogas per hour,and an H_(2)S concentration ranging between 500 ppm and 600 ppm(1 ppm=1 cm^(3)/m^(3))on average.The FBTB column has been designed to hold a packing volume of 2.21 m^(3) at a gas retention time of 84 seconds being loaded at an average of 32.88 g H_(2)S/(m^(3)·h).The highest H_(2)S RE of 98% was found at temperatures between 30℃ and 40℃.A major decline in RE to 21%-45%was observed at temperatures from 5℃ to 25℃.The results clearly showed a temperature optimum range for sulfate reducing bacteria.The results reveal that RE is little affected by different pH values and air ratios.During the experimental period,the practical suitability of the FBTB system could be proved while avoiding the disadvantages of internal biological desulfurization methods.
基金Supported by the National Water Pollution Control and Management(2008ZX07316-002)the University of Macao Research Committee(RG067/09-10S/SHJ/FST)
文摘A novel full scale modified A2O (anoxic/anaerobic/aerobic/pre-anoxic)-membrane bioreactor (MBR) plant combined with the step feed strategy was operated to improve the biological nutrient removal (BNR) from low C/N ratio municipal wastewater in Southern China. Transformation of organic carbon, nitrogen and phosphorus, and membrane fouling were investigated. Experimental results for over four months demonstrated good efficiencies for chemical oxygen demand (COD) and NH4^+-N removal, with average values higher than 84.5%and 98.1%, re-spectively. A relatively higher total nitrogen (TN) removal efficiency (52.1%) was also obtained at low C/N ratio of 3.82, contributed by the configuration modification (anoxic zone before anaerobic zone) and the step feed with a distribution ratio of 1:1. Addition of sodium acetate into the anoxic zone as the external carbon source, with a theoretical amount of 31.3 mg COD per liter in influent, enhanced denitrification and the TN removal efficiency in-creased to 74.9%. Moreover, the total phosphate (TP) removal efficiency increased by 18.0%. It is suggested that the external carbon source is needed to improve the BNR performance in treating low C/N ratio municipal waste-water in the modified A^2O-MBR process.