A new anaerobic reactor, Jet-loop anaerobic fluidized bed (JLAFB), was designed for treating high-sulfate wastewater. The treatment characteristics, including the effect of influent COD/SO42 ratio and alkalinity and...A new anaerobic reactor, Jet-loop anaerobic fluidized bed (JLAFB), was designed for treating high-sulfate wastewater. The treatment characteristics, including the effect of influent COD/SO42 ratio and alkalinity and sulfide inhibition in reactors, were discussed for a JLAFB and a general anaerobic fiuidized bed (AFB) reactor used as sulfate-reducing phase and methane-producing phase, respectively, in two-phase anaerobic digestion process. The formation of granules in the two reactors was also examined. The results indicated that COD and sulfate removal had different demand of influent COD/SO4^2- ratios. When total COD removal was up to 85%, the ratio was only required up to 1.2, whereas, total sulfate removal up to 95% required it exceeding 3.0. The alkalinity in the two reactors increased linearly with the growth of influent alkalinity. Moreover, the change of influent alkalinity had no significant effect on pH and volatile fatty acids (VFA) in the two reactors. Influent alkalinity kept at 400-500 mg/L could meet the requirement of the treating process. The JLAFB reactor had great advantage in avoiding sulfide and free-H2S accumulation and toxicity inhibition on microorganisms. When sulfate loading rate was up to 8. 1 kg/(m^3.d), the sulfide and free-H2S concentrations in JLAFB reactor were 58.6 and 49.7 mg/L, respectively. Furthermore, the granules, with offwhite color, ellipse shape and diameters of 1.0-3.0 mm, could be developed in JLAFB reactor. In granules, different groups of bacteria were distributed in different layers, and some inorganic metal compounds such as Fe, Ca, Mg etc. were found.展开更多
The performance of heat transfer is a key issue for reactor design in petrochemical industry. Since the heat transfer in reactors is a complicated process and depends on multiple parameters, the evaluation of the heat...The performance of heat transfer is a key issue for reactor design in petrochemical industry. Since the heat transfer in reactors is a complicated process and depends on multiple parameters, the evaluation of the heat transfer performance is usually challenging, and few previous studies gave an overall view of heat exchange performance of different types of reactors. In this review, heat transfer coefficients of two types of petrochemical reactors, including the packed bed and the fluidized bed, were systematically analyzed and compared based on a number of reported correlations. The relationship between heat transfer coefficients and fluid flow velocity in different reactors has been well established, which clearly demonstrates the varying range of their heat transfer coefficients. Heat transfer coefficients of gas-phase packed bed can exceed 200 W/m^2·K, rather than the suggested values(17—89 W/m^2·K) mentioned in the literature. The fluidized bed shows better performance for both two-phase and three-phase beds as compared to the packed bed. Systems with liquid phase also show better heat transfer performance than other phases because of the larger heat capacity of liquid. Thus the industrial three-phase fluidized beds have the best heat transfer performance with an overall heat transfer coefficient of greater than 1 000 W/m^2·K. The heat transfer results provided by this review can afford not only new insights into the heat transfer in typical reactors, but also the basis and guidelines for reactor design and selection.展开更多
Hydrogen is an attractive energy carrier due to the high conversion efficiency and low pollutant emission.Chemical looping hydrogen production(CLHP)is an available way for producing high purity hydrogen with relativel...Hydrogen is an attractive energy carrier due to the high conversion efficiency and low pollutant emission.Chemical looping hydrogen production(CLHP)is an available way for producing high purity hydrogen with relatively low penalty energy and CO_(2)is captured simultaneously.Three reactors are usually contained for CLHP system including air reactor(AR),fuel reactor(FR)and steam reactor(SR).In current work,we focus on the performance of CLHP system,which is the basement for operation and design.Numerical simulations are carried out for analyzing the flow behavior and the numerical structure is built according to the experimental unit constructed at Southeast University,China.Results show that the operation of L-valve influences most the solid circulating rate of system and particles pass L-valve easily with large aeration rate.Mass distribution results indicate that fuel reactor has the capacity for particles storage.Increase of gas inlet rate of steam reactor leads to more particles leave steam reactor and accumulate into fuel reactor.L-valve can prevent the gas leakage between reactors and it will be adopted for reactive unit.Combining the operation of fuel reactor and L-valve,the system can reach steady state and get the regulating ability.展开更多
The effects of funnel-shape internals on hydrodynamics and mass transfer in an internal loop three-phase fluidized bed were investigated.Three different kinds of internals were designed which were setup on the top of ...The effects of funnel-shape internals on hydrodynamics and mass transfer in an internal loop three-phase fluidized bed were investigated.Three different kinds of internals were designed which were setup on the top of draft-tube in terms of horizontal angle and outer diameter, and gas hold up, liquid mixing time, liquid circulation velocity and mass transfer coefficient were measured respectively.It was shown that the riser gas holdup and mass transfer coefficient increased by 10% and 15% than that without such an internal, liquid mixing time decreased by 10% to 25%.When the superficial gas velocity was less than 0.5 cm·s-1, liquid circulation velocity increased with the setup of such internals·Liquid circulation velocity decreased when the superficial gas velocity was above 0.5 cm·s-1.In addition, the variation of structural parameters of funnel-shape internals had significant effects on hydrodynamics and mass transfer.展开更多
基金Project supported by the National Natural Science Foundation of China(No. 50278036)the Natural Science Foundation of Guangdong Province (No. 04105951)
文摘A new anaerobic reactor, Jet-loop anaerobic fluidized bed (JLAFB), was designed for treating high-sulfate wastewater. The treatment characteristics, including the effect of influent COD/SO42 ratio and alkalinity and sulfide inhibition in reactors, were discussed for a JLAFB and a general anaerobic fiuidized bed (AFB) reactor used as sulfate-reducing phase and methane-producing phase, respectively, in two-phase anaerobic digestion process. The formation of granules in the two reactors was also examined. The results indicated that COD and sulfate removal had different demand of influent COD/SO4^2- ratios. When total COD removal was up to 85%, the ratio was only required up to 1.2, whereas, total sulfate removal up to 95% required it exceeding 3.0. The alkalinity in the two reactors increased linearly with the growth of influent alkalinity. Moreover, the change of influent alkalinity had no significant effect on pH and volatile fatty acids (VFA) in the two reactors. Influent alkalinity kept at 400-500 mg/L could meet the requirement of the treating process. The JLAFB reactor had great advantage in avoiding sulfide and free-H2S accumulation and toxicity inhibition on microorganisms. When sulfate loading rate was up to 8. 1 kg/(m^3.d), the sulfide and free-H2S concentrations in JLAFB reactor were 58.6 and 49.7 mg/L, respectively. Furthermore, the granules, with offwhite color, ellipse shape and diameters of 1.0-3.0 mm, could be developed in JLAFB reactor. In granules, different groups of bacteria were distributed in different layers, and some inorganic metal compounds such as Fe, Ca, Mg etc. were found.
文摘The performance of heat transfer is a key issue for reactor design in petrochemical industry. Since the heat transfer in reactors is a complicated process and depends on multiple parameters, the evaluation of the heat transfer performance is usually challenging, and few previous studies gave an overall view of heat exchange performance of different types of reactors. In this review, heat transfer coefficients of two types of petrochemical reactors, including the packed bed and the fluidized bed, were systematically analyzed and compared based on a number of reported correlations. The relationship between heat transfer coefficients and fluid flow velocity in different reactors has been well established, which clearly demonstrates the varying range of their heat transfer coefficients. Heat transfer coefficients of gas-phase packed bed can exceed 200 W/m^2·K, rather than the suggested values(17—89 W/m^2·K) mentioned in the literature. The fluidized bed shows better performance for both two-phase and three-phase beds as compared to the packed bed. Systems with liquid phase also show better heat transfer performance than other phases because of the larger heat capacity of liquid. Thus the industrial three-phase fluidized beds have the best heat transfer performance with an overall heat transfer coefficient of greater than 1 000 W/m^2·K. The heat transfer results provided by this review can afford not only new insights into the heat transfer in typical reactors, but also the basis and guidelines for reactor design and selection.
基金the National Key Research and Development Plan(No.2017YFE0112500)State Key Laboratory of Clean Energy Utilization(Open Fund Project No.ZJUCUE2022018)National Natural Science Foundation of China(No.51806192)。
文摘Hydrogen is an attractive energy carrier due to the high conversion efficiency and low pollutant emission.Chemical looping hydrogen production(CLHP)is an available way for producing high purity hydrogen with relatively low penalty energy and CO_(2)is captured simultaneously.Three reactors are usually contained for CLHP system including air reactor(AR),fuel reactor(FR)and steam reactor(SR).In current work,we focus on the performance of CLHP system,which is the basement for operation and design.Numerical simulations are carried out for analyzing the flow behavior and the numerical structure is built according to the experimental unit constructed at Southeast University,China.Results show that the operation of L-valve influences most the solid circulating rate of system and particles pass L-valve easily with large aeration rate.Mass distribution results indicate that fuel reactor has the capacity for particles storage.Increase of gas inlet rate of steam reactor leads to more particles leave steam reactor and accumulate into fuel reactor.L-valve can prevent the gas leakage between reactors and it will be adopted for reactive unit.Combining the operation of fuel reactor and L-valve,the system can reach steady state and get the regulating ability.
文摘The effects of funnel-shape internals on hydrodynamics and mass transfer in an internal loop three-phase fluidized bed were investigated.Three different kinds of internals were designed which were setup on the top of draft-tube in terms of horizontal angle and outer diameter, and gas hold up, liquid mixing time, liquid circulation velocity and mass transfer coefficient were measured respectively.It was shown that the riser gas holdup and mass transfer coefficient increased by 10% and 15% than that without such an internal, liquid mixing time decreased by 10% to 25%.When the superficial gas velocity was less than 0.5 cm·s-1, liquid circulation velocity increased with the setup of such internals·Liquid circulation velocity decreased when the superficial gas velocity was above 0.5 cm·s-1.In addition, the variation of structural parameters of funnel-shape internals had significant effects on hydrodynamics and mass transfer.