The wavelength tuning ranges of a grating external-cavity laser diode (ECLD) have been studied by the equivalent cavity method. The maximum tuning range (MTR) and the continuous tuning range (CTR), which are related t...The wavelength tuning ranges of a grating external-cavity laser diode (ECLD) have been studied by the equivalent cavity method. The maximum tuning range (MTR) and the continuous tuning range (CTR), which are related to the maximum and the minimum threshold carrier densities, are deduced from the threshold condition. We define a ratio of the CTR to the MTR. This ratio is only determined by the reflectivities of the external and internal facets of the ECLD. The analysis shows that there is an appropriate combination of the external and internal-cavity reflectivities to obtain a given CTR in the design of an ECLD.展开更多
A hertz-linewidth ultra-stable laser(USL), which will be used to detect the clock transition line, in a strontium optical clock will be launched into the China Space Station(CSS) in late 2022. As the core of the USL, ...A hertz-linewidth ultra-stable laser(USL), which will be used to detect the clock transition line, in a strontium optical clock will be launched into the China Space Station(CSS) in late 2022. As the core of the USL, an interference-filter-based externalcavity diode laser(IF-ECDL) was developed. The IF-ECDL has a compact, stable, and environmentally insensitive design.Performances of the IF-ECDL are presented. The developed IF-ECDL can pass the aerospace environmental tests, indicating that the IF-ECDL can be suitable for space missions in the CSS.展开更多
External-cavity diode laser(ECDL)has important applications in many fundamental and applied researches.Here we report a method to fast and widely tune the frequency of a stabilized ECDL.The beat frequency between the ...External-cavity diode laser(ECDL)has important applications in many fundamental and applied researches.Here we report a method to fast and widely tune the frequency of a stabilized ECDL.The beat frequency between the ECDL and a frequency-locked reference laser is identified by the voltagecontrolled oscillator contained in a phase detector,whose output voltage is subtracted from the flexibly controlled PC signal to generate an error signal for stabilizing the ECDL.The output frequency of the stabilized ECDL can be shifted at a short characteristic time of∼150µs within a range of∼620 MHz.The wide and fast-frequency tuning achieved by our method is compared with other previous works.We demonstrated the performance of our method by the efficient sub-Doppler cooling of Cs atoms with the temperature as low as 6µK.展开更多
基金The Foundation of National Railways Ministry , National Studying
文摘The wavelength tuning ranges of a grating external-cavity laser diode (ECLD) have been studied by the equivalent cavity method. The maximum tuning range (MTR) and the continuous tuning range (CTR), which are related to the maximum and the minimum threshold carrier densities, are deduced from the threshold condition. We define a ratio of the CTR to the MTR. This ratio is only determined by the reflectivities of the external and internal facets of the ECLD. The analysis shows that there is an appropriate combination of the external and internal-cavity reflectivities to obtain a given CTR in the design of an ECLD.
基金This work was supported by the National Key R&D Program of China(No.2020YFC2201300)the National Natural Science Foundation of China(No.11903041)。
文摘A hertz-linewidth ultra-stable laser(USL), which will be used to detect the clock transition line, in a strontium optical clock will be launched into the China Space Station(CSS) in late 2022. As the core of the USL, an interference-filter-based externalcavity diode laser(IF-ECDL) was developed. The IF-ECDL has a compact, stable, and environmentally insensitive design.Performances of the IF-ECDL are presented. The developed IF-ECDL can pass the aerospace environmental tests, indicating that the IF-ECDL can be suitable for space missions in the CSS.
基金supported by the National Key Research and Development Program of China(Grant No.2017YFA0304203)the National Natural Science Foundation of China(Grant Nos.61722507,61675121,and 61705123)+4 种基金PCSIRT(No.IRT17R70)111 Project(Grant No.D18001)the Shanxi 1331 KSCthe Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi(OIT)the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics.
文摘External-cavity diode laser(ECDL)has important applications in many fundamental and applied researches.Here we report a method to fast and widely tune the frequency of a stabilized ECDL.The beat frequency between the ECDL and a frequency-locked reference laser is identified by the voltagecontrolled oscillator contained in a phase detector,whose output voltage is subtracted from the flexibly controlled PC signal to generate an error signal for stabilizing the ECDL.The output frequency of the stabilized ECDL can be shifted at a short characteristic time of∼150µs within a range of∼620 MHz.The wide and fast-frequency tuning achieved by our method is compared with other previous works.We demonstrated the performance of our method by the efficient sub-Doppler cooling of Cs atoms with the temperature as low as 6µK.