New modified combination mathematical models including the pores blocking models and the cake layer models were developed to describe the continuous cross-flow microfiltration in an airlift external loop slurry reacto...New modified combination mathematical models including the pores blocking models and the cake layer models were developed to describe the continuous cross-flow microfiltration in an airlift external loop slurry reactor. The pores blocking models were created based on the standard blocking law and the intermediate blocking law, and then the cake layer models were developed based on the hydrodynamic theory in which the calculation method of porosity of cake layer was newly corrected. The Air-Water-FCC equilibrium catalysts cold model experiment was used to verify the relevant models.Results showed that the calculated values fitted well with experimental data with a relative error of less than 10%.展开更多
Pneumatically agitated slurry reactors,including bubble column reactors and airlift loop reactors(ALRs),are important gas-liquid-solid multiphase reactors.These reactors have been widely applied in many processes,espe...Pneumatically agitated slurry reactors,including bubble column reactors and airlift loop reactors(ALRs),are important gas-liquid-solid multiphase reactors.These reactors have been widely applied in many processes,especially in the biological fermentation and energy chemical industry,due to their low shear stress,good mixing,perfect mass-/heat-transfer properties,and relatively low costs.To further improve the performance of slurry reactors(i.e.,mixing and mass/heat transfer)and to satisfy industrial require-ments(e.g.,temperature control,reduction of back-mixing,and product separation),the process intensi-fication of slurry reactors is essential.This article starts by reviewing the latest advancements in the intensification of mixing and mass/heat transfer in these two types of reactors.It then summarizes process-intensification methods for mixing and separation that allow continuous production in these slurry reactors.Process-intensification technology that integrates directional flow in an ALR with simple solid-liquid separation in a hydrocyclone is recommended for its high efficiency and low costs.This arti-cle also systematically addresses vital considerations and challenges,including flow regime discrimina-tion,gas spargers,solid particle effects,and other concerns in slurry reactors.It introduces the progress of numerical simulation using computational fluid dynamics(CFD)for the rational design of slurry reactors and discusses difficulties in modeling.Finally,it presents conclusions and perspectives on the design of industrial slurry reactors.展开更多
A novel fiber optic probe system and a set of commercial ultrasonic Doppler velocimeters have been used to study the hydrodynamic behavior of a three phase airlift loop (TPAL) slurry reactor. Experiments have been ...A novel fiber optic probe system and a set of commercial ultrasonic Doppler velocimeters have been used to study the hydrodynamic behavior of a three phase airlift loop (TPAL) slurry reactor. Experiments have been carried out in a loop reactor with 100 mm inner diameter and 2.5 m height, in which air, tap water and silica gel particles are used as the gas, liquid and solid phase, respectively. The radial profile of gas holdup, bubble size, bubble rising velocity, liquid circulating velocity, and the influence of the main operating conditions such as superficial gas velocity and solids concentration have been studied experimentally in the TPAL slurry reactor. The experimental results show that the bubble characteristics are different in various flow regimes and the radial profiles of some hydrodynamic parameters in the TPAL slurry reactor are more uniform than those in traditional three phase reactors. The distribution of the bubble size and bubble rising velocity can be described by a lognormal function. The influence of superficial gas velocity on the hydrodynamic parameters is more remarkable than that of the solids concentration.展开更多
基金financially supported by the National Key Research & Development Program of China (2016YFB0301600)
文摘New modified combination mathematical models including the pores blocking models and the cake layer models were developed to describe the continuous cross-flow microfiltration in an airlift external loop slurry reactor. The pores blocking models were created based on the standard blocking law and the intermediate blocking law, and then the cake layer models were developed based on the hydrodynamic theory in which the calculation method of porosity of cake layer was newly corrected. The Air-Water-FCC equilibrium catalysts cold model experiment was used to verify the relevant models.Results showed that the calculated values fitted well with experimental data with a relative error of less than 10%.
基金supported by the National Key Research and Development Program of China(2016YFB0301701)the National Natural Science Foundation of China(21808234,21878318,and 21938009)+3 种基金the DNL Cooperation Fund,Chinese Academy of Sciences(CAS)(DNL201902)the Strategic Priority Research Program of the CAS(XDA21060400)the QIBEBT and Dalian National Laboratory for Clean Energy of the CAS(QIBEBT ZZBS201803 and QIBEBT I201907)the CAS Key Technology Talent Program.
文摘Pneumatically agitated slurry reactors,including bubble column reactors and airlift loop reactors(ALRs),are important gas-liquid-solid multiphase reactors.These reactors have been widely applied in many processes,especially in the biological fermentation and energy chemical industry,due to their low shear stress,good mixing,perfect mass-/heat-transfer properties,and relatively low costs.To further improve the performance of slurry reactors(i.e.,mixing and mass/heat transfer)and to satisfy industrial require-ments(e.g.,temperature control,reduction of back-mixing,and product separation),the process intensi-fication of slurry reactors is essential.This article starts by reviewing the latest advancements in the intensification of mixing and mass/heat transfer in these two types of reactors.It then summarizes process-intensification methods for mixing and separation that allow continuous production in these slurry reactors.Process-intensification technology that integrates directional flow in an ALR with simple solid-liquid separation in a hydrocyclone is recommended for its high efficiency and low costs.This arti-cle also systematically addresses vital considerations and challenges,including flow regime discrimina-tion,gas spargers,solid particle effects,and other concerns in slurry reactors.It introduces the progress of numerical simulation using computational fluid dynamics(CFD)for the rational design of slurry reactors and discusses difficulties in modeling.Finally,it presents conclusions and perspectives on the design of industrial slurry reactors.
文摘A novel fiber optic probe system and a set of commercial ultrasonic Doppler velocimeters have been used to study the hydrodynamic behavior of a three phase airlift loop (TPAL) slurry reactor. Experiments have been carried out in a loop reactor with 100 mm inner diameter and 2.5 m height, in which air, tap water and silica gel particles are used as the gas, liquid and solid phase, respectively. The radial profile of gas holdup, bubble size, bubble rising velocity, liquid circulating velocity, and the influence of the main operating conditions such as superficial gas velocity and solids concentration have been studied experimentally in the TPAL slurry reactor. The experimental results show that the bubble characteristics are different in various flow regimes and the radial profiles of some hydrodynamic parameters in the TPAL slurry reactor are more uniform than those in traditional three phase reactors. The distribution of the bubble size and bubble rising velocity can be described by a lognormal function. The influence of superficial gas velocity on the hydrodynamic parameters is more remarkable than that of the solids concentration.