期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Lockdown-induced Urban Aerosol Change over Changchun, China During COVID-19 Outbreak with Polarization LiDAR 被引量:1
1
作者 CHEN Weiwei DUANMU Lingjian +5 位作者 QIN Yang YANG Hongwu FU Jing LU Chengwei FENG Wei GUO Li 《Chinese Geographical Science》 SCIE CSCD 2022年第5期824-833,共10页
Depending on various government policies,COVID-19(Corona Virus Disease-19) lockdowns have had diverse impacts on global aerosol concentrations.In 2022,Changchun a provincial capital city in Northeast China,suffered a ... Depending on various government policies,COVID-19(Corona Virus Disease-19) lockdowns have had diverse impacts on global aerosol concentrations.In 2022,Changchun a provincial capital city in Northeast China,suffered a severe COVID-19 outbreak and implemented a very strict lockdown that lasted for nearly two months.Using ground-based polarization Light Detection and Ranging(LiDAR),we detected real-time aerosol profile parameters(EC,extinction coefficient;DR,depolarization ratio;AOD,aerosol optical depth),as well as air-quality and meteorological indexes from 1 March to 30 April in 2021 and 2022 to quantify the effects of lockdown on aerosol concentrations.The period in 2022 was divided into three stages:pre-lockdown(1-10 March),strict lockdown(11 March to 10 April),and partial lockdown(11-30 April).The results showed that,during the strict lockdown period,compared with the pre-lockdown period,there were substantial reductions in aerosol parameters(EC and AOD),and this was consistent with the concentrations of the atmospheric pollutants PM_(2.5)(particulate matter with an aerodynamic diameter ≤2.5 μm) and PM_(2.5)(particulate matter with an aerodynamic diameter ≤10 μm),and the Oconcentration increased by 8.3%.During the strict lockdown,the values of EC within0-1 km and AOD decreased by 16.0% and 11.2%,respectively,as compared to the corresponding period in 2021.Lockdown reduced the conventional and organized emissions of air pollutants,and it clearly delayed the time of seasonal emissions from agricultural burning;however,it did not decrease the number of farmland fire points.Considering meteorological factors and eliminating the influence of wind-blown dust events,the results showed that reductions from conventional organized emission sources during the strict lockdown contributed to a 30% air-quality improvement and a 22% reduction in near-surface extinction(0-2 km).Aerosols produced by urban epidemic prevention and disinfection can also be identified using the EC.Regarding seasonal sources of agricultural straw burning,the concentrated burning induced by the epidemic led to the occurrence of heavy pollution from increased amounts of atmospheric aerosols,with a contribution rate of 62%.These results indicate that there is great potential to further improve air quality in the local area,and suggest that the comprehensive use of straw accompanied by reasonable planned burning is the best way to achieve this. 展开更多
关键词 PM_(2.5)(particulate matter with an aerodynamic diameter≤2.5μm) NO2 O3 aerosol optical depth(AOD) extinction coefficient depolarization ratio COVID-19(Corona Virus Disease-19)lockdown
下载PDF
Inversion Methods of Optical Constants of Semitransparent Solid Materials from Transmittance Spectrograms
2
作者 Dong Li Xin-Lin Xia Qing Ai 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第2期55-60,共6页
The direct calculation models of spectral transmittance of single and double slabs consisted of semitransparent solid materials were developed based on ray trace method,and a new inversion method of optical constants ... The direct calculation models of spectral transmittance of single and double slabs consisted of semitransparent solid materials were developed based on ray trace method,and a new inversion method of optical constants ( k is extinction coefficient and n is refractive index) of materials was proposed based on transmittance spectrograms of double slabs. Differences between the new method and two others currently used methods were studied,and application range of methods was also investigated. Optical constants of selenide glass attained in references were selected as true values,and spectral transmittances of glass simulated based on direct calculation model were regarded as experimental values. Optical constants of selenide glass were achieved by inverse models. Influences of measurement error on inverse results were also determined. The results showed that: (1) based on transmittance spectrograms of double slabs in which thickness of single slab is the same,the new proposed method can attain optical constants of materials; (2) the effect of optical constants n and k on three inversion methods are urgent larger,but inversed calculation precision of optical constants are higher in most application ranges; (3) the influence of measurement errors existed in experimental datum on the inverse precision of three methods are urgent 展开更多
关键词 semitransparent solid material optical constants extinction coefficient refractive index inverse model
下载PDF
Tunable Optical Bandgap of Gadolinium Substituted Nickel-Zinc Ferrite Nanoparticles-Effect of Calcination Temperature on Its Optical Parameters
3
作者 Katrapally Vijaya Kumar 《Advances in Materials Physics and Chemistry》 2022年第3期33-45,共13页
The gadolinium substituted nickel-zinc ferrite nanoparticles of the composition, Ni<sub>0.5</sub>Zn<sub>0.5</sub>Gd<sub>0.05</sub>Fe<sub>1.95</sub>O<sub>4</sub&... The gadolinium substituted nickel-zinc ferrite nanoparticles of the composition, Ni<sub>0.5</sub>Zn<sub>0.5</sub>Gd<sub>0.05</sub>Fe<sub>1.95</sub>O<sub>4</sub> were prepared using sol-gel method. In order to study the effect of calcination temperature on the optical parameters, the prepared powder was divided into five parts. The first part was taken as the as-prepared sample and the remaining four parts were calcinated at different temperatures, 600°C, 700°C, 800°C & 900°C. The X-ray diffraction patterns revealed the formation of cubic spinel structure with single phase and Fd3m space group. The crystallite size was increased from 11.75 nm to 18.13 nm as the calcination temperature increased from 600 to 900°C whereas as-prepared sample exhibited 17.61 nm. The dislocation density was decreased from 7.243 × 10<sup>-3</sup> to 3.042 × 10<sup>-3</sup> nm<sup>-2</sup> as the calcination temperature increased from 600°C to 900°C. The micro strain was decreased from 10 × 10<sup>-4</sup> to 6.452 × 10<sup>-4</sup> as the calcination temperature increased from 600°C to 900°C. The characteristic absorbance peaks were obtained at 255.2 nm for the ferrite nanoparticles of as-prepared and calcinated at 600°C and 800°C whereas it was obtained as 252.8 nm for the sample calcinated at 700°C and there was no such characteristic peak in UV-visible range for the sample calcinated at 900°C;it is expected in the below 200 nm region. The optical energy gap was calculated using Kubelka-Munk equation based on Tauc’s plot and found in the range 4.100 eV to 5.389 eV. The lowest energy gap of 4.100 eV exhibited by the sample calcinated at 700°C and the highest energy gap of 5.389 eV by the sample calcinated at 900°C. It is concluded that the tunable band gaps can be obtained with varying calcination temperature. 展开更多
关键词 XRD Optical Energy Bandgap Refractive Index Absorption coefficient extinction coefficient Real and Imaginary Parts of Dielectric Constant
下载PDF
Surface and intrinsic contributions to extinction properties of ZnSe quantum dots 被引量:5
4
作者 Shangxin Lin Jiongzhao Li +4 位作者 Chaodan Pu Hairui Lei Meiyi Zhu Haiyan Qin Xiaogang Peng 《Nano Research》 SCIE EI CAS CSCD 2020年第3期824-831,共8页
This work studies extinction properties of ZnSe quantum dots terminated with either Se-surface or Zn-surface(Se-ZnSe or Zn-ZnSe QDs).In addition to commonly observed photoluminescence quenching by anionic surface site... This work studies extinction properties of ZnSe quantum dots terminated with either Se-surface or Zn-surface(Se-ZnSe or Zn-ZnSe QDs).In addition to commonly observed photoluminescence quenching by anionic surface sites,Se-ZnSe QDs are found to show drastic signatures of Se-surface states in their UV-visible(Vis)absorption spectra.Similar to most QDs reported in literature,monodisperse Zn-ZnSe QDs show sharp absorption features and blue-shifted yet steep absorption edge respect to the bulk bandgap.However,for monodisperse Se-ZnSe QDs,all absorption features are smeared and a low-energy tail is identified to extend to an energy window below the bulk ZnSe bandgap.Along increasing their size,a cyclic growth of ZnSe QDs switches their surface from Zn-terminated to Se-terminated ones,which confirms that the specific absorption signatures are reproducibly repeated between those of two types of the QDs.Though the extinction coefficients per unit of Se-ZnSe QDs are always larger than those of Zn-ZnSe QDs with the same size,both of them approach the same bulk limit.In addition to contribution of the lattice,extinction coefficients per nanocrystal of Zn-ZnSe QDs show an exponential term against their sizes,which is expected for quantum-confinement enhancement of electron-hole wavefunction overlapping.For Se-ZnSe QDs,there is the third term identified for their extinction coefficients per nanocrystal,which is proportional to the square of size of the QDs and consistent with surface contribution. 展开更多
关键词 quantum dots ZNSE extinction coefficient surface state
原文传递
Effects of relative humidity and PM2.5 chemical compositions on visibility impairment in Chengdu, China 被引量:21
5
作者 Fan Liu Qinwen Tan +2 位作者 Xia Jiang Fumo Yang Wenju Jiang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2019年第12期15-23,共9页
To better understand the potential causes of visibility impairment in autumn and winter in Chengdu,relative humidity(RH),visibility,the concentrations of PM2.5 and its chemical components were on-line measured continu... To better understand the potential causes of visibility impairment in autumn and winter in Chengdu,relative humidity(RH),visibility,the concentrations of PM2.5 and its chemical components were on-line measured continuously in Chengdu from Nov.2016 to Jan.2017.Six obvious haze episodes occurred in Chengdu,with the total time of haze episodes accounted for more than 90%of the total observation period,and higher NO2 concentrations and RH were related to the high particle concentrations in haze episodes.The visibility decreased in a non-linear tendency under different RH conditions with the increase of PM2.5 concentrations,which was more sensitive to RH under lower PM2.5 concentrations.The threshold concentration of PM2.5 got more smaller with the increase of RH.During the entire observation period,organic matter(OM)was the largest contributor(31.12%to extinction coefficient(bext)),followed by NH4NO3 and(NH4)2SO4 with 28.03%and 23.01%,respectively.However,with the visibility impairment from Type I(visibility>10 km)to Type IV(visibility≤2 km),the contribution of OM to bextdecreased from 38.12%to 26.77%,while the contribution of NH4NO3 and(NH4)2SO4 to bextincreased from 19.09%and 20.20%to 34.29%and 24.35%,respectively,and NH4NO3 became the largest contributor to bextat Type IV.The results showed that OM and NH4NO3 were the key components of PM2.5 for visibility impairment in Chengdu,indicating that the control of precursors emissions of carbonaceous species and NH4NO3 could effectively improve the visibility in Chengdu. 展开更多
关键词 Visibility impairment PM2.5 chemical composition Relative humidity Light extinction coefficient Secondary formation
原文传递
Simulation and retrieval for spaceborne aerosol and cloud high spectral resolution lidar of China
6
作者 Feiyue MAO Xi LUO +3 位作者 Jie SONG Zhenxin LIANG Wei GONG Weibiao CHEN 《Science China Earth Sciences》 SCIE EI CSCD 2022年第3期570-583,共14页
Clouds and aerosols can significantly affect global climate change and the atmospheric environment,and observing them three-dimensionally with high spatial and temporal resolutions is a long-standing issue.Spaceborne ... Clouds and aerosols can significantly affect global climate change and the atmospheric environment,and observing them three-dimensionally with high spatial and temporal resolutions is a long-standing issue.Spaceborne lidars are effective instruments for the vertical detection of clouds and aerosols globally.Numerous Mie scattering lidars were successfully launched and widely used,such as the Cloud-Aerosol Lidar with Orthogonal Polarization(CALIOP)and Geoscience Laser Altimeter System.However,the retrieval of Mie scattering lidar data is an ill-posed problem that introduces a large uncertainty.The spaceborne Aerosol and Cloud High Spectral Resolution Lidar(ACHSRL)of China is currently under development and scheduled for launch in the near future.The ACHSRL attracted extensive attention,because it can separate Mie and Rayleigh scattering signals and avoid ill-posed retrieval.In this study,we conducted ACHSRL signal simulation and retrieval to explore the potential of the ACHSRL.First,we proposed a simplified scheme for retrieving optical parameters,which reduced the number of equations and intermediate variables of the traditional method and avoided false extrema in the backscatter coefficient retrieval.Additionally,the experiments showed that the backscatter coefficient retrieval was overestimated owing to the influence of the Poisson noise but can be corrected.Second,we examined the feasibility of the strategy of“first retrieving the lidar ratio then retrieving the extinction coefficient”to improve the extinction coefficient retrieval.We found that the retrieval error in the simulated cases can be reduced to less than 1%of the original retrieval error.Furthermore,we discussed the influence of the uncertainty of the iodine filter transmittance on the retrieval of the optical parameters and found that the average relative error was less than 1‰.Finally,we conducted simulation and retrieval based on the atmospheric parameters measured by the CALIOP.Results showed that the relative error in the backscatter and extinction coefficients at night was 12%and 28%for test cases,respectively,which was superior to that in the backscatter and extinction coefficients of the corresponding CALIOP product(i.e.,75%and 82%).This research is significant and useful for the development and application of satellite lidars in the future. 展开更多
关键词 Atmospheric environment Laser detection SATELLITE Signal simulation extinction coefficient Backscatter coefficient
原文传递
MAX-DOAS observation in the midlatitude marine boundary layer: Influences of typhoon forced air mass
7
作者 Ruifeng Zhang Shanshan Wang +3 位作者 Sanbao Zhang Ruibin Xue Jian Zhu Bin Zhou 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2022年第10期63-73,共11页
As a passive remote sensing technique,MAX-DOAS method was widely used to investigate the vertical profiles of aerosol and trace gases in the lower troposphere.However,the measurements for midlatitude marine boundary l... As a passive remote sensing technique,MAX-DOAS method was widely used to investigate the vertical profiles of aerosol and trace gases in the lower troposphere.However,the measurements for midlatitude marine boundary layer are rarely reported,especially during the storm weather system.In this study,the MAX-DOAS was used to retrieve the aerosol,HCHO and NO_(2) vertical distribution at Huaniao Island of East China Sea in summer 2018,during which a strong tropical cyclone developed and passed through the measurement site.The observed aerosol optical depth(AOD),HCHO-and NO_(2)-VCDs(Vertical Column Density)were in the range of 0.19-0.97,(2.57-12.27)×10^(15) molec/cm^(2),(1.24-4.71)×10^(15) molec/cm^(2),which is much higher than remote ocean area due to the short distance to continent.The vertically resolved aerosol extinction coefficient(AEC),HCHO and NO_(2) presented the decline trend with the increase of height.After the typhoon passing through,the distribution of high levels of aerosol and HCHO stretched to about 1 kmand the abundances of the bottom layer were found as double higher than before,reaching 0.51 km^(−1) and 2.44 ppbv,while NO_(2) was still constrained within about 300 m with 2.59 ppbv in the bottom layer.The impacts of typhoon process forced air mass were also observed at the suburban site in Shanghai in view of both the aerosol extinction and chemical components.The different changes on air quality associated with typhoon and its mechanism in two different environments:coastal island and coastal city are worthy of further investigation as it frequent occurred in East Asia during summer and fall. 展开更多
关键词 MAX-DOAS Aerosol optical depth Aerosol extinction coefficient Marine boundary layer TYPHOON
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部