In order to investigate the mechanical properties and stress-strain curves of concrete at different ages under impact load,the impact compression tests of concrete at age of 1, 3, 7, 14 and 28 d were conducted with a ...In order to investigate the mechanical properties and stress-strain curves of concrete at different ages under impact load,the impact compression tests of concrete at age of 1, 3, 7, 14 and 28 d were conducted with a large diameter split Hopkinson pressure bar, respectively. Based on statistical damage theory and Weibull distribution, combining the analysis of the change laws of stressstrain curves and viscosity coefficient of concrete with age, a damage constitutive model that can reflect the variation in dynamic mechanical properties with age was proposed. The stress-strain curves calculated from the proposed model are in good agreement with those from experimental data directly.展开更多
The rule of infant age concrete strength development under low temperature and complex affecting factors is researched. An efficient and reliable mathematical forecast model is set up to predict the infant age concret...The rule of infant age concrete strength development under low temperature and complex affecting factors is researched. An efficient and reliable mathematical forecast model is set up to predict the infant age concrete antifreeze critical strength under low temperature at construction site. On the basis of the revision of concrete equivalent coefficient under complex influencing factors, least-squares curve-fitting method is applied to approximate the concrete strength under standard curing and the forecast formula of concrete compressive strength could be obtained under natural temperature condition by various effects. When the amounts of double-doped are 10% fly ashes and 4% silica fumes as coment replacement, the antifreeze critical strength changes form 3.5-4.1MPa under different low temperature curing. The equivalent coefficient correction formula of concrete under low temperature affected by various factors could be obtained. The obtained equivalent coefficient is suitable for calculating the strength which is between 10% to 40% of standard strength and the curing temperature from 5-20 ℃. The forecast value of concrete antifreeze critical strength under low temperature could be achieved by combining the concrete antifreeze critical strength value with the compressive strength forecast of infant age concrete under low temperature. Then the theory for construction quality control under low temperature is provided.展开更多
A study on the autogenous shrinkage (AS) of concrete from a mesocosmic perspective was carried out using numerical simulation technology. The temperature history and the autogenous relative humidity (ARH), two fac...A study on the autogenous shrinkage (AS) of concrete from a mesocosmic perspective was carried out using numerical simulation technology. The temperature history and the autogenous relative humidity (ARH), two factors that have been shown to have occasional influence on this process in previous studies, were introduced into this study. According to these concepts, a program for simulation of the temperature field, humidity field, and stress field based on the equivalent age method and a fully automatic aggregate modeling tool were used. With the help of these programs, the study of a small concrete specimen provided some useful conclusions: the aggregate and the matrix show distinct distribution properties in the temperature field, humidity field, and stress field; the aggregate-matrix interface has a high possibility of becoming the location of the initial cracking caused by AS of concrete; the distribution of random aggregates is extremely important for mesoscopical analysis; and the temperature history is the main factor affecting the AS of concrete. On the whole, inherent mechanisms and cracking mechanisms of AS of concrete can be explained more reasonably and realistically only by considering the different characteristics of material phases and the effects of temperature and humidity.展开更多
The effect of curing age on chloride diffusion coefficient of recycled aggregate concrete subjected to different compressive stresses was investigated.A compression loading setup was both designed and fabricated.The c...The effect of curing age on chloride diffusion coefficient of recycled aggregate concrete subjected to different compressive stresses was investigated.A compression loading setup was both designed and fabricated.The chloride diffusion coefficients of recycled aggregate concrete under compressive stresses were measured by the rapid chloride ion migration(RCM)method.The experimental results show that the chloride diffusion coefficients of recycled aggregate concrete(RAC)under different compressive stress ratios generally decrease with the increase of curing age.For RAC subjected to the same compressive stress ratios,the chloride diffusion coefficients approximately have power functions with curing ages and the relationship models are proposed.Moreover,the influence of curing age on chloride diffusion coefficient firstly decreases and then increases as the compressive stress ratio increases.展开更多
A modified testing system characterized by full automation, steady operation and high accuracy of strain and stress measurements was developed to determine the cracking tendency of high strength concrete (HSC) in re...A modified testing system characterized by full automation, steady operation and high accuracy of strain and stress measurements was developed to determine the cracking tendency of high strength concrete (HSC) in restrained condition at early ages. The shrinkage stress and the tensile creep behavior of HSC at early ages were investigated. The influence of W/C ratio and curing conditions on the early-age shrinkage stress and tensile creep was evaluated. It was found that the lower W/C ratio and drying curing condition resulted in higher shrinkage stress, stress induced tensile creep and greater cracking tendency.展开更多
The early age performance of spread footing, especially the growth of cracks, is deeply influenced by the heat of hydration of cement. In this paper, 3D finite element method(FEM)models are set up to analyze the tempe...The early age performance of spread footing, especially the growth of cracks, is deeply influenced by the heat of hydration of cement. In this paper, 3D finite element method(FEM)models are set up to analyze the temperature distribution and thermal stresses of the spread footing during the first seven days after concrete placement. The mechanical properties of early age concrete are calculated, which are further used in the FEM models. The possibilities of crack growth are estimated by the method of crack index. The crack indexes of quite a number of points are very close to the allowable limit of 1.0 during the last three days. It is also indicated that the influence of foundation ring on the thermal stresses of concrete can be neglected.展开更多
Using age adjusted effective modulus(AAEM)method,creep of concrete filled steel tube(CFST)member was formulated considering of creep coefficient and aging coefficient.Ten CFST specimens were tested including eight for...Using age adjusted effective modulus(AAEM)method,creep of concrete filled steel tube(CFST)member was formulated considering of creep coefficient and aging coefficient.Ten CFST specimens were tested including eight for creep and two for shrinkage.The experimental result was compared with the computed result using AAEM in which the creep coefficient was taken from calibration of ACI model based on experimental result on sealed concrete,and aging coefficient was supplied from relaxation test on sealed concrete specimen.Furthermore,the creep of CFST member was analyzed using author's own subroutine to input concrete properties through user programmable feature(UPF)in ANSYS software.Comparison was made on authors' own experimental database,some existing experimental results,and results from AAEM and numerical analysis.Finally,the conditions of applicability of AAEM method are put forward,and numerical approach to compute creep of CFST specimen is delineated.展开更多
Based on the test results, the differences of the carbonized depth of concrete measured by phenolphthalein indicator and rainbow indicator were discussed, the effects of the water to cement ratio of concrete, the carb...Based on the test results, the differences of the carbonized depth of concrete measured by phenolphthalein indicator and rainbow indicator were discussed, the effects of the water to cement ratio of concrete, the carbonized age and the relative humidity of environment on the carbonized depth of concrete and the depth of half-carbonized zone corresponding to green zone measured by rainbow indicator were also analyzed. It is proved that the depth measured by phenolphthalein indicator is always smaller than that measured by rainbow indicator, and the half-carbonized zone can only be measured by rainbow indicator. The carbonized and half-carbonized depths of concrete are influenced by the carbonation age, the water to cement ratio of concrete and the relative humidity of environment. It is suggested that the phenolphthalein indicator can be used to measure the carbonized depth of concrete when the strength grade of concrete is below C45, otherwise, the rainbow indicator should be utilized.展开更多
The applicability of ultrasonic pulse velocity (UPV) method to in-situ monitor setting and hardening process of foamed concrete (FC) was systematically investigated. The UPVs of various FC pastes were automaticall...The applicability of ultrasonic pulse velocity (UPV) method to in-situ monitor setting and hardening process of foamed concrete (FC) was systematically investigated. The UPVs of various FC pastes were automatically and continuously measured by a specially designed ultrasonic monitoring apparatus (UMA). Ultrasonic tests were performed on FC mixtures with different density (300, 500, 800 and 1 000 kg/m3), and different fly ash contents (0%, 20%, 40% and 60%). The influence of curing temperatures (20, 40, 60 and 80~C) was also studied. The experimental results show that three characteristic stages can be clearly identified during the setting process of an arbitrary FC paste: dormant stage, acceleration stage, and deceleration stage. Wet density, fly ash content, and curing temperature have great impact on setting behavior. A stepwise increase of the wet density results in shorter dormant stage and larger final UPV. Hydration reaction rate is obviously promoted with an increase in curing temperature. However, the addition fly ash retards the microstn,lcture formation. To aid in comparing with the ultrasonic results, the consistence spread test and Vicat needle test (VNT) were also conducted. A correlation between ultrasonic and VNT results was also established to evaluate the initial and final setting time of the FC mixtures. Finally, certain ranges of UPV with reasonable widths were suggested for the initial and final setting time, respectively.展开更多
According to the phenomenon that the physical properties have,a great effect on the electric capability of carbon fiber reinforced concrete, the author researched the relationship between DC resistance of carbon fiber...According to the phenomenon that the physical properties have,a great effect on the electric capability of carbon fiber reinforced concrete, the author researched the relationship between DC resistance of carbon fiber reinforced concrete and curing age using the two-probe method. Then the effect of insulative area, location and quantity on DC resistance of carbon fiber reinforced concrete was investigated at different curing age with analysis of hydration. The results suggest that DC resistance increases greatly with its curing age, which illustrates the relationship like Gaussian curve. In every curing ages the electric capability of carbon fiber reinforced concrete weakenes with the increase of insulative area. In same curing ages, section and insulative area, the more the quantity of insulation, the stronger the conductibility. The insulative location in optimal position can only result in optimal conductibility.展开更多
The creep-induced deformation of the arch rib of concrete-filled steel tubular (CFST) arches under a sustained load can increase the bending moment, which may lead to earlier stability failure called creep buckling....The creep-induced deformation of the arch rib of concrete-filled steel tubular (CFST) arches under a sustained load can increase the bending moment, which may lead to earlier stability failure called creep buckling. To investigate the influences of concrete creep on the buckling strength of arches, a theoretical analysis for the creep buckling of CFST circular arches under distributed radial load is performed. The simplified Arutyunyan-Maslov (AM) creep law is used to model the creep behavior of concrete core, and the creep integral operator is introduced. The analytical solutions of the time-dependent buckling strength under the sustained load are achieved and compared with the existing formula based on the age-adjusted effective modulus method (AEMM). Then the solutions are used to determine the influences of the steel ratio and the first loading age on the creep buckling of CFST arches. The results show that the analytical solutions are of good accuracy and applicability. For CFST arches, the steel ratio and the first loading age have significant influences on creep buckling. An approximate log-linear relationship between the decreased degrees of the creep buckling strength and the first loading age is found. For the commonly used parameters, the maximum loss of the buckling strength induced bv concrete creen is close to 40%展开更多
Concrete properties such as unit weight and compressive strength are highly dependable on the properties of aggregate. Current research aims to study the effect of aggregate properties on concrete considering the reso...Concrete properties such as unit weight and compressive strength are highly dependable on the properties of aggregate. Current research aims to study the effect of aggregate properties on concrete considering the resource of aggregate. The properties of aggregate and fine sand were studied (specific gravity, density, absorption, and abrasion). Also, the properties of concrete were studied (density, unit weight, and compressive strength). Samples of coarse and medium aggregates, and fine sand were collected from different areas in Jordan (Ajloun, Amman, Aqaba, Irbid, Jerash, Karak, Ma’an, Madaba, Salt, Zarqa, and Tafila) to be tested and used in concrete mix. Aggregate from South of Jordan has higher values in specific gravity and bulk density (Aqaba, Ma’an, and Karak aggregates). Also, the same aggregate samples have lower values in absorption and abrasion (Ma’an, Aqaba, Karak, and Tafila). For the properties of concrete that include density, unit weight, and compressive strength, all samples have achieved the design properties and strength in the current study. For density and unit weight, samples from South of Jordan have higher values (Ma’an and Aqaba). And for compressive strength, Ma’an, Irbid and Amman concrete samples have the highest values at 7-day, while the 28-day compressive strength comes highest for Zarqa, Ma’an, Irbid and Amman. From the results of the current study, the compressive strength at 7-day and 28-day is related to the density of coarse and medium aggregate, abrasion, and absorption. The higher the density, the higher the compressive strength. And the lower abrasion and absorption, the higher the compressive strength of concrete. Current research will be useful in selecting the source of aggregate to produce a considerable concrete strength.展开更多
In recent building practice,rapid construction is one of the principal requisites.Furthermore,in designing concrete structures,compressive strength is the most significant of all parameters.While 3-d and 7-d compressi...In recent building practice,rapid construction is one of the principal requisites.Furthermore,in designing concrete structures,compressive strength is the most significant of all parameters.While 3-d and 7-d compressive strength reflects the strengths at early phases,the ultimate strength is paramount.An effort has been made in this study to develop mathematical models for predicting compressive strength of concrete incorporating ethylene vinyl acetate(EVA)at the later phases.Kolmogorov-Smirnov(KS)goodness-of-fit test was used to examine distribution of the data.The compressive strength of EVA-modified concrete was studied by incorporating various concentrations of EVA as an admixture and by testing at ages of 28,56,90,120,210,and 365 d.An accelerated compressive strength at 3.5 hours was considered as a reference strength on the basis of which all the specified strengths were predicted by means of linear regression fit.Based on the results of KS goodness-of-fit test,it was concluded that KS test statistics value(D)in each case was lower than the critical value 0.521 for a significance level of 0.05,which demonstrated that the data was normally distributed.Based on the results of compressive strength test,it was concluded that the strength of EVA-modified specimens increased at all ages and the optimum dosage of EVA was achieved at 16%concentration.Furthermore,it was concluded that predicted compressive strength values lies within a 6%difference from the actual strength values for all the mixes,which indicates the practicability of the regression equations.This research work may help in understanding the role of EVA as a viable material in polymer-based cement composites.展开更多
Concrete is the most widely used construction material in the world. The situation in the country is not an exception as most of the infrastructures in Kenya such as buildings, bridges, concrete drainage among others,...Concrete is the most widely used construction material in the world. The situation in the country is not an exception as most of the infrastructures in Kenya such as buildings, bridges, concrete drainage among others, are constructed using concrete. Sadly, the failure of buildings and other concrete structures is very common in Kenya. Blended Portland cement type 32.5 N/mm<sup>2</sup> is the most widely used concrete binder material and is found in all parts of the country. Despite blended cement CEM 32.5 being the most commonly used cement type in construction industry in Kenya and most developing countries as a result of its low price and availability locally, its strength gain has been proven to be lower compared to when other types of cement are used due to quantity of pozzolanic material added to the blend. This paper outlines findings of an experimental investigation on the use of cypress tree extract as an accelerator to enhance rate of gain of strength on Kenyan blended cements. Six different blended cement brands locally available were used during the study. Cement chemical analysis was done using X-ray diffraction method while for the cypress extract, Atomic Absorption Spectrometer machine was used. Physical and mechanical properties were checked based on the British standards. The generation of the concrete mix design was done using the British DOE method and concrete was tested for the compressive strength at 7, 14, 21, 28, 56 and 90 days. It was observed that 15% dosage of the extract expressed as a mass percentage of the cement content gives the most improved compressive strength of concrete, 10.4% at 7 days and 9.5% at 28 days hence the optimum. It was further noted that when Cypress tree extract is used as an accelerator in the mix, the blended cement concrete achieves the design strength at 27 days saving 10 days of the project duration compared to when no accelerator is used while the ultimate strength is achieved at 67 days. The study therefore recommends the use of the cypress tree bark extract at a dosage of 15%, by mass, of the cement content as an accelerator when the structure is to be loaded at 28 days and waiting up to 39 days before loading the structure if no accelerator is used for blended cement concrete.展开更多
基金Project(2010CB732004)supported by National Basic Research Program of ChinaProject(50934006)supported by the National Natural Science Foundation of China
文摘In order to investigate the mechanical properties and stress-strain curves of concrete at different ages under impact load,the impact compression tests of concrete at age of 1, 3, 7, 14 and 28 d were conducted with a large diameter split Hopkinson pressure bar, respectively. Based on statistical damage theory and Weibull distribution, combining the analysis of the change laws of stressstrain curves and viscosity coefficient of concrete with age, a damage constitutive model that can reflect the variation in dynamic mechanical properties with age was proposed. The stress-strain curves calculated from the proposed model are in good agreement with those from experimental data directly.
基金the New Century College Outstanding Person Foundation of Liaoning(No.R-04-02)
文摘The rule of infant age concrete strength development under low temperature and complex affecting factors is researched. An efficient and reliable mathematical forecast model is set up to predict the infant age concrete antifreeze critical strength under low temperature at construction site. On the basis of the revision of concrete equivalent coefficient under complex influencing factors, least-squares curve-fitting method is applied to approximate the concrete strength under standard curing and the forecast formula of concrete compressive strength could be obtained under natural temperature condition by various effects. When the amounts of double-doped are 10% fly ashes and 4% silica fumes as coment replacement, the antifreeze critical strength changes form 3.5-4.1MPa under different low temperature curing. The equivalent coefficient correction formula of concrete under low temperature affected by various factors could be obtained. The obtained equivalent coefficient is suitable for calculating the strength which is between 10% to 40% of standard strength and the curing temperature from 5-20 ℃. The forecast value of concrete antifreeze critical strength under low temperature could be achieved by combining the concrete antifreeze critical strength value with the compressive strength forecast of infant age concrete under low temperature. Then the theory for construction quality control under low temperature is provided.
基金supported by the Key Program of the National Natural Science Foundation of China (Grant No. 50539010)the National Natural Science Foundation of China (Grant No. 50779010)
文摘A study on the autogenous shrinkage (AS) of concrete from a mesocosmic perspective was carried out using numerical simulation technology. The temperature history and the autogenous relative humidity (ARH), two factors that have been shown to have occasional influence on this process in previous studies, were introduced into this study. According to these concepts, a program for simulation of the temperature field, humidity field, and stress field based on the equivalent age method and a fully automatic aggregate modeling tool were used. With the help of these programs, the study of a small concrete specimen provided some useful conclusions: the aggregate and the matrix show distinct distribution properties in the temperature field, humidity field, and stress field; the aggregate-matrix interface has a high possibility of becoming the location of the initial cracking caused by AS of concrete; the distribution of random aggregates is extremely important for mesoscopical analysis; and the temperature history is the main factor affecting the AS of concrete. On the whole, inherent mechanisms and cracking mechanisms of AS of concrete can be explained more reasonably and realistically only by considering the different characteristics of material phases and the effects of temperature and humidity.
基金supported by the Fundamental Research Funds for the Central UniversitiesFoundation of Graduate Innovation Center in Nanjing University of Aeronautics and Astronautics (No.kfjj20150105)the National Natural Science Foundation of China (No. 51279074)
文摘The effect of curing age on chloride diffusion coefficient of recycled aggregate concrete subjected to different compressive stresses was investigated.A compression loading setup was both designed and fabricated.The chloride diffusion coefficients of recycled aggregate concrete under compressive stresses were measured by the rapid chloride ion migration(RCM)method.The experimental results show that the chloride diffusion coefficients of recycled aggregate concrete(RAC)under different compressive stress ratios generally decrease with the increase of curing age.For RAC subjected to the same compressive stress ratios,the chloride diffusion coefficients approximately have power functions with curing ages and the relationship models are proposed.Moreover,the influence of curing age on chloride diffusion coefficient firstly decreases and then increases as the compressive stress ratio increases.
基金the National Natural Science Foundation of China(No.50408016)
文摘A modified testing system characterized by full automation, steady operation and high accuracy of strain and stress measurements was developed to determine the cracking tendency of high strength concrete (HSC) in restrained condition at early ages. The shrinkage stress and the tensile creep behavior of HSC at early ages were investigated. The influence of W/C ratio and curing conditions on the early-age shrinkage stress and tensile creep was evaluated. It was found that the lower W/C ratio and drying curing condition resulted in higher shrinkage stress, stress induced tensile creep and greater cracking tendency.
基金Supported by the National Natural Science Foundation of China(No.51379142)International Science and Technology Cooperation Program of China(No.2012DFA70490)Tianjin Municipal Natural Science Foundation(No.13JCQNJC06900)
文摘The early age performance of spread footing, especially the growth of cracks, is deeply influenced by the heat of hydration of cement. In this paper, 3D finite element method(FEM)models are set up to analyze the temperature distribution and thermal stresses of the spread footing during the first seven days after concrete placement. The mechanical properties of early age concrete are calculated, which are further used in the FEM models. The possibilities of crack growth are estimated by the method of crack index. The crack indexes of quite a number of points are very close to the allowable limit of 1.0 during the last three days. It is also indicated that the influence of foundation ring on the thermal stresses of concrete can be neglected.
文摘Using age adjusted effective modulus(AAEM)method,creep of concrete filled steel tube(CFST)member was formulated considering of creep coefficient and aging coefficient.Ten CFST specimens were tested including eight for creep and two for shrinkage.The experimental result was compared with the computed result using AAEM in which the creep coefficient was taken from calibration of ACI model based on experimental result on sealed concrete,and aging coefficient was supplied from relaxation test on sealed concrete specimen.Furthermore,the creep of CFST member was analyzed using author's own subroutine to input concrete properties through user programmable feature(UPF)in ANSYS software.Comparison was made on authors' own experimental database,some existing experimental results,and results from AAEM and numerical analysis.Finally,the conditions of applicability of AAEM method are put forward,and numerical approach to compute creep of CFST specimen is delineated.
基金Funded by Outstanding Youth Science Foundation of Henan Province of China (No. 04120002300)
文摘Based on the test results, the differences of the carbonized depth of concrete measured by phenolphthalein indicator and rainbow indicator were discussed, the effects of the water to cement ratio of concrete, the carbonized age and the relative humidity of environment on the carbonized depth of concrete and the depth of half-carbonized zone corresponding to green zone measured by rainbow indicator were also analyzed. It is proved that the depth measured by phenolphthalein indicator is always smaller than that measured by rainbow indicator, and the half-carbonized zone can only be measured by rainbow indicator. The carbonized and half-carbonized depths of concrete are influenced by the carbonation age, the water to cement ratio of concrete and the relative humidity of environment. It is suggested that the phenolphthalein indicator can be used to measure the carbonized depth of concrete when the strength grade of concrete is below C45, otherwise, the rainbow indicator should be utilized.
基金Founded by the key laboratory of high performance civil engineering materials(2010CEM002)the National Natural Science Foundation of China(51178106,51138002)+1 种基金the Program for New Century Excellent Talents in University(NCET-08-0116),973 Program(2009CB623200)the Program sponsored for scientific innovation research of college graduate in Jiangsu province(CXLX_0105)
文摘The applicability of ultrasonic pulse velocity (UPV) method to in-situ monitor setting and hardening process of foamed concrete (FC) was systematically investigated. The UPVs of various FC pastes were automatically and continuously measured by a specially designed ultrasonic monitoring apparatus (UMA). Ultrasonic tests were performed on FC mixtures with different density (300, 500, 800 and 1 000 kg/m3), and different fly ash contents (0%, 20%, 40% and 60%). The influence of curing temperatures (20, 40, 60 and 80~C) was also studied. The experimental results show that three characteristic stages can be clearly identified during the setting process of an arbitrary FC paste: dormant stage, acceleration stage, and deceleration stage. Wet density, fly ash content, and curing temperature have great impact on setting behavior. A stepwise increase of the wet density results in shorter dormant stage and larger final UPV. Hydration reaction rate is obviously promoted with an increase in curing temperature. However, the addition fly ash retards the microstn,lcture formation. To aid in comparing with the ultrasonic results, the consistence spread test and Vicat needle test (VNT) were also conducted. A correlation between ultrasonic and VNT results was also established to evaluate the initial and final setting time of the FC mixtures. Finally, certain ranges of UPV with reasonable widths were suggested for the initial and final setting time, respectively.
基金the National Natural Science Foundation of China(No.50438010)
文摘According to the phenomenon that the physical properties have,a great effect on the electric capability of carbon fiber reinforced concrete, the author researched the relationship between DC resistance of carbon fiber reinforced concrete and curing age using the two-probe method. Then the effect of insulative area, location and quantity on DC resistance of carbon fiber reinforced concrete was investigated at different curing age with analysis of hydration. The results suggest that DC resistance increases greatly with its curing age, which illustrates the relationship like Gaussian curve. In every curing ages the electric capability of carbon fiber reinforced concrete weakenes with the increase of insulative area. In same curing ages, section and insulative area, the more the quantity of insulation, the stronger the conductibility. The insulative location in optimal position can only result in optimal conductibility.
基金Supported by the National Natural Science Foundation of China(No.51378162,No.51178150)the National Key Technology Research and Development Program of the Ministry of Science and Technology of China(No2013BAJ08B01)
文摘The creep-induced deformation of the arch rib of concrete-filled steel tubular (CFST) arches under a sustained load can increase the bending moment, which may lead to earlier stability failure called creep buckling. To investigate the influences of concrete creep on the buckling strength of arches, a theoretical analysis for the creep buckling of CFST circular arches under distributed radial load is performed. The simplified Arutyunyan-Maslov (AM) creep law is used to model the creep behavior of concrete core, and the creep integral operator is introduced. The analytical solutions of the time-dependent buckling strength under the sustained load are achieved and compared with the existing formula based on the age-adjusted effective modulus method (AEMM). Then the solutions are used to determine the influences of the steel ratio and the first loading age on the creep buckling of CFST arches. The results show that the analytical solutions are of good accuracy and applicability. For CFST arches, the steel ratio and the first loading age have significant influences on creep buckling. An approximate log-linear relationship between the decreased degrees of the creep buckling strength and the first loading age is found. For the commonly used parameters, the maximum loss of the buckling strength induced bv concrete creen is close to 40%
文摘Concrete properties such as unit weight and compressive strength are highly dependable on the properties of aggregate. Current research aims to study the effect of aggregate properties on concrete considering the resource of aggregate. The properties of aggregate and fine sand were studied (specific gravity, density, absorption, and abrasion). Also, the properties of concrete were studied (density, unit weight, and compressive strength). Samples of coarse and medium aggregates, and fine sand were collected from different areas in Jordan (Ajloun, Amman, Aqaba, Irbid, Jerash, Karak, Ma’an, Madaba, Salt, Zarqa, and Tafila) to be tested and used in concrete mix. Aggregate from South of Jordan has higher values in specific gravity and bulk density (Aqaba, Ma’an, and Karak aggregates). Also, the same aggregate samples have lower values in absorption and abrasion (Ma’an, Aqaba, Karak, and Tafila). For the properties of concrete that include density, unit weight, and compressive strength, all samples have achieved the design properties and strength in the current study. For density and unit weight, samples from South of Jordan have higher values (Ma’an and Aqaba). And for compressive strength, Ma’an, Irbid and Amman concrete samples have the highest values at 7-day, while the 28-day compressive strength comes highest for Zarqa, Ma’an, Irbid and Amman. From the results of the current study, the compressive strength at 7-day and 28-day is related to the density of coarse and medium aggregate, abrasion, and absorption. The higher the density, the higher the compressive strength. And the lower abrasion and absorption, the higher the compressive strength of concrete. Current research will be useful in selecting the source of aggregate to produce a considerable concrete strength.
文摘In recent building practice,rapid construction is one of the principal requisites.Furthermore,in designing concrete structures,compressive strength is the most significant of all parameters.While 3-d and 7-d compressive strength reflects the strengths at early phases,the ultimate strength is paramount.An effort has been made in this study to develop mathematical models for predicting compressive strength of concrete incorporating ethylene vinyl acetate(EVA)at the later phases.Kolmogorov-Smirnov(KS)goodness-of-fit test was used to examine distribution of the data.The compressive strength of EVA-modified concrete was studied by incorporating various concentrations of EVA as an admixture and by testing at ages of 28,56,90,120,210,and 365 d.An accelerated compressive strength at 3.5 hours was considered as a reference strength on the basis of which all the specified strengths were predicted by means of linear regression fit.Based on the results of KS goodness-of-fit test,it was concluded that KS test statistics value(D)in each case was lower than the critical value 0.521 for a significance level of 0.05,which demonstrated that the data was normally distributed.Based on the results of compressive strength test,it was concluded that the strength of EVA-modified specimens increased at all ages and the optimum dosage of EVA was achieved at 16%concentration.Furthermore,it was concluded that predicted compressive strength values lies within a 6%difference from the actual strength values for all the mixes,which indicates the practicability of the regression equations.This research work may help in understanding the role of EVA as a viable material in polymer-based cement composites.
文摘Concrete is the most widely used construction material in the world. The situation in the country is not an exception as most of the infrastructures in Kenya such as buildings, bridges, concrete drainage among others, are constructed using concrete. Sadly, the failure of buildings and other concrete structures is very common in Kenya. Blended Portland cement type 32.5 N/mm<sup>2</sup> is the most widely used concrete binder material and is found in all parts of the country. Despite blended cement CEM 32.5 being the most commonly used cement type in construction industry in Kenya and most developing countries as a result of its low price and availability locally, its strength gain has been proven to be lower compared to when other types of cement are used due to quantity of pozzolanic material added to the blend. This paper outlines findings of an experimental investigation on the use of cypress tree extract as an accelerator to enhance rate of gain of strength on Kenyan blended cements. Six different blended cement brands locally available were used during the study. Cement chemical analysis was done using X-ray diffraction method while for the cypress extract, Atomic Absorption Spectrometer machine was used. Physical and mechanical properties were checked based on the British standards. The generation of the concrete mix design was done using the British DOE method and concrete was tested for the compressive strength at 7, 14, 21, 28, 56 and 90 days. It was observed that 15% dosage of the extract expressed as a mass percentage of the cement content gives the most improved compressive strength of concrete, 10.4% at 7 days and 9.5% at 28 days hence the optimum. It was further noted that when Cypress tree extract is used as an accelerator in the mix, the blended cement concrete achieves the design strength at 27 days saving 10 days of the project duration compared to when no accelerator is used while the ultimate strength is achieved at 67 days. The study therefore recommends the use of the cypress tree bark extract at a dosage of 15%, by mass, of the cement content as an accelerator when the structure is to be loaded at 28 days and waiting up to 39 days before loading the structure if no accelerator is used for blended cement concrete.