The influence of pore structure difference on rock electrical characteristics of reservoir and oil reservoir was analyzed taking Triassic Chang 6 reservoir in Block Yanwumao in the middle of Ordos Basin as an example....The influence of pore structure difference on rock electrical characteristics of reservoir and oil reservoir was analyzed taking Triassic Chang 6 reservoir in Block Yanwumao in the middle of Ordos Basin as an example. The relationship between the pore structure difference and the low resistivity oil layer was revealed and demonstrated through core observation, lab experiments, geological research, well log interpretation and trial production etc. The results show that there were two kinds of oil layers in Chang 6 oil layer set, normal oil layer and low resistivity oil layer in the region, corresponding to two types of pore structures, pore type mono-medium and micro-fracture-pore type double-medium; the development of micro-fracture changed greatly the micro-pore structure of the reservoir, and the pore structure difference had an important influence on the rock electrical characteristics of the extra-low permeability sandstone reservoir and oil reservoir; the normal oil layers had obvious characteristics of pore-type mono-medium, and were concentrated in Chang 61, Chang 6232 and Chang 62; the low resistivity oil layers had obvious characteristics of micro-fracture-pore type double-medium, which were mainly distributed in Chang 612 and Chang 63. The mud filtrate penetrated deep into the oil layers along the micro-cracks, leading to sharp reduction of resistivity, and thus low resistivity of the oil layer; the low resistivity oil layers had better storage capacity and higher productivity than the normal oil layers.展开更多
In order to improve CO_(2) capture,utilization and storage(CCUS) to solve carbon emission,sandstone from the Triassic Liujiagou Formation(LF) from the Ordos Basin in China was investigated using permeability tests and...In order to improve CO_(2) capture,utilization and storage(CCUS) to solve carbon emission,sandstone from the Triassic Liujiagou Formation(LF) from the Ordos Basin in China was investigated using permeability tests and computed X-ray tomography(CT) scanning.The presence of reactive minerals within the geological CO_(2) sequestration target storage formation can allow reaction with injected CO_(2),which changes the porosity and permeability of the LF beds,affecting storage effectiveness.To investigate the effect of chemical reactions on the pore structure and permeability of sandstone cores representing the LF CO_(2) storage,tests were conducted to analyze the changes in porosity and permeability of sandstone cores induced by CO_(2)-saturated brine at different reaction times(28-day maximum reaction period).Porosity and permeability of the sandstone increased after reaction with CO_(2)-saturated brine due to mineral dissolution.The sandstone exhibited an increase in porosity and permeability after 15 days of reaction with CO_(2)-saturated brine.Moreover,there was an increase in the volume of large pores in the sandstone after the 28-day period.The pore network of the sandstone was established through CT results,and the porosity calculated based on the obtained pore network was close to that measured in the test,demonstrating the feasibility to use CT to study the evolution of the microstructure of sandstone after long-time exposure to CO_(2)-saturated brine.展开更多
Low-frequency vibrations can effectively improve natural sandstone permeability,and higher vibration frequency is associated with larger permeability.However,the optimum permeability and permeability evolution mechani...Low-frequency vibrations can effectively improve natural sandstone permeability,and higher vibration frequency is associated with larger permeability.However,the optimum permeability and permeability evolution mechanism for uranium leaching and the relationship between permeability and the change of chemical reactive rate affecting uranium leaching have not been determined.To solve the above problems,in this study,identical homogeneous sandstone samples were selected to simulate lowpermeability sandstone;a permeability evolution model considering the combined action of vibration stress,pore water pressure,water flow impact force,and chemical erosion was established;and vibration leaching experiments were performed to test the model accuracy.Both the permeability and chemical reactions were found to simultaneously restrict U6þleaching,and the vibration treatment increased the permeability,causing the U6þleaching reaction to no longer be diffusion-constrained but to be primarily controlled by the reaction rate.Changes of the model calculation parameters were further analyzed to determine the permeability evolution mechanism under the influence of vibration and chemical erosion,to prove the correctness of the mechanism according to the experimental results,and to develop a new method for determining the optimum permeability in uranium leaching.The uranium leaching was found to primarily follow a process consisting of(1)a permeability control stage,(2)achieving the optimum permeability,(3)a chemical reactive rate control stage,and(4)a channel flow stage.The resolution of these problems is of great significance for facilitating the application and promotion of lowfrequency vibration in the CO_(2)+O_(2) leaching process.展开更多
Evaluating the permeability and irreducible water saturation of tight sandstone reservoirs is challenging.This study uses distribution functions to fit measured NMR T_(2)distributions of tight sandstone reservoirs and...Evaluating the permeability and irreducible water saturation of tight sandstone reservoirs is challenging.This study uses distribution functions to fit measured NMR T_(2)distributions of tight sandstone reservoirs and extract parameters for characterizing pore size distribution.These parameters are then used to establish prediction models for permeability and irreducible water saturation of reservoirs.Results of comparing the fit of the T_(2)distributions by the Gauss and Weibull distribution functions show that the fitting accuracy with the Weibull distribution function is higher.The physical meaning of the statistical parameters of the Weibull distribution function is defined to establish nonlinear prediction models of permeability and irreducible water saturation using the radial basis function(RBF)method.Correlation coefficients between the predicted values by the established models and the measured values of the tight sandstone core samples are 0.944 for permeability and 0.851 for irreducible water saturation,which highlight the effectiveness of the prediction models.展开更多
Hydrocarbon resources in low-permeability sandstones are very abundant and are extensively distributed. Low-permeability reservoirs show several unique characteristics, including lack of a definite trap boundary or ca...Hydrocarbon resources in low-permeability sandstones are very abundant and are extensively distributed. Low-permeability reservoirs show several unique characteristics, including lack of a definite trap boundary or caprock, limited buoyancy effect, complex oil-gas-water distribution, without obvious oil-gas-water interfaces, and relatively low oil (gas) saturation. Based on the simulation experiments of oil accumulation in low-permeability sandstone (oil displacing water), we study the migration and accumulation characteristics of non-Darcy oil flow, and discuss the values and influencing factors of relative permeability which is a key parameter characterizing oil migration and accumulation in low-permeability sandstone. The results indicate that: 1) Oil migration (oil displacing water) in low- permeability sandstone shows non-Darcy percolation characteristics, and there is a threshold pressure gradient during oil migration and accumulation, which has a good negative correlation with permeability and apparent fluidity; 2) With decrease of permeability and apparent fluidity and increase of fluid viscosity, the percolation curve is closer to the pressure gradient axis and the threshold pressure gradient increases. When the apparent fluidity is more than 1.0, the percolation curve shows modified Darcy flow characteristics, while when the apparent fluidity up" non-Darcy percolation curve; 3) Oil-water is less than 1.0, the percolation curve is a "concave- two-phase relative permeability is affected by core permeability, fluid viscosity, apparent fluidity, and injection drive force; 4) The oil saturation of low- permeability sandstone reservoirs is mostly within 35%-60%, and the oil saturation also has a good positive correlation with the permeability and apparent fluidity.展开更多
To study the relative sensitivity of permeability to pore pressure Pp and confining pressure Pc for clay-rich rocks, permeability measurements were performed on samples of four clay-rich sandstones. A new method (her...To study the relative sensitivity of permeability to pore pressure Pp and confining pressure Pc for clay-rich rocks, permeability measurements were performed on samples of four clay-rich sandstones. A new method (hereafter denoted the "slide method") was developed and used for analyzing the permeability data obtained. The effective pressure coefficients for permeability nk were calculated. The values of nk were found to be greater than 1.0 and insensitive to changes in pressure. These results confirmed observations previously made on clay-rich rocks. Also, the coefficients nk obtained had different characteristics for different samples because of differences in the types of clay they contained. The effective pressure law (σeff=Pc-nkPp) determined using the slide method gave better results about k(oefr) than classic Terzaghi's law (σeff=Pc-nkPp).展开更多
Due to inherent limits of data acquisition and geophysical data resolution, there are large uncertainties in the characterization of subsurface fractures. However, outcrop analogies can provide qualitative and quantit...Due to inherent limits of data acquisition and geophysical data resolution, there are large uncertainties in the characterization of subsurface fractures. However, outcrop analogies can provide qualitative and quantitative information on a large number of fractures, based on which the accuracy of subsurface fracture characterization can be improved. Here we take the tectonic fracture modeling of an ultra-low permeability sandstone reservoir based on an outcrop analogy, a case study of the Chang6t~ Formation of the Upper Triassic Yanchang Group of the Wangyao Oilfield in the Ordos Basin of China. An outcrop at the edge of the basin is a suitable analog for the reservoir, but the prerequisite is that they must have equivalent previous stress fields, similar final structural characteristics, relative timing and an identical depositional environment and diagenesis. The relationship among fracture density, rock type and bed thickness based on the outcrop is one of the most important fracture distribution models, and can be used to interpret fracture density in individual wells quantitatively. Fracture orientation, dip, geometry and scale, also should be described and measured in the outcrop, and can be used together with structure restoration and single well fracture density interpretation to guide fracture intensity prediction on bed surfaces and to constrain the construction of the 3D fracture geometry model of the subsurface reservoir. The application of the above principles shows the outcrop-based tectonic fracture models of the target ultra-low permeability sandstone reservoir are consistent with fractures inferred from microseismic interpretation and tracer tests. This illustrated that the fracture modeling based on the outcrop analogy is reliable and can reduce the uncertainty in stochastic fracture modeling.展开更多
Geological disasters will happen in cold regions because of the effects of freeze-thaw cycles on rocks or soils, so studying the effects of these cycles on the mechanical characteristics and permeability properties of...Geological disasters will happen in cold regions because of the effects of freeze-thaw cycles on rocks or soils, so studying the effects of these cycles on the mechanical characteristics and permeability properties of rocks is very important. In this study, red sandstone samples were frozen and thawed with o, 4, 8 and 12 cycles, each cycle including 12 h of freezing and 12 h of thawing. The P-wave velocities of these samples were measured, and the mechanical properties and evolution of the steady-state permeabilities were investigated in a series of uniaxial and triaxial compression tests. Experimental results show that, with the increasing of cyclic freeze-thaw times, the P-wave velocity of the red sandstone decreases. The number of freeze-thaw cycles has a significant influence on the uniaxial compressive strength, elastic modulus, cohesion, and angle of internal friction. The evolution of permeability of the rock samples after cycles of freeze-thaw in a complete stress-strain process under triaxial compression is closely related to the variation of the microstructure in the rock. There is a highly corresponding relationship between volumetric strain and permeability with axial strain in all stages of the stress-strain behaviour.展开更多
With the aim of better understanding the tight gas reservoirs in the Zizhou area of east Ordos Basin,a total of 222 samples were collected from 50 wells for a series of experiments.In this study,three pore-throat comb...With the aim of better understanding the tight gas reservoirs in the Zizhou area of east Ordos Basin,a total of 222 samples were collected from 50 wells for a series of experiments.In this study,three pore-throat combination types in sandstones were revealed and confirmed to play a controlling role in the distribution of throat size and the characteristics of gas-water relative permeability.The type-I sandstones are dominated by intercrystalline micropores connected by cluster throats,of which the distribution curves of throat size are narrow and have a strong single peak(peak ratio>30%).The pores in the type-II sandstones dominantly consist of secondary dissolution pores and intercrystalline micropores,and throats mainly occur as slice-shaped throats along cleavages between rigid grain margins and cluster throats in clay cement.The distribution curves of throat size for the type-II sandstones show a bimodal distribution with a substantial low-value region between the peaks(peak ratio<15%).Primary intergranular pores and secondary intergranular pores are mainly found in type-III samples,which are connected by various throats.The throat size distribution curves of type-III sandstones show a nearly normal distribution with low kurtosis(peak ratio<10%),and the micro-scale throat radii(>0.5μm)constitute a large proportion.From type-I to type-III sandstones,the irreducible water saturation(Swo)decreased;furthermore,the slope of the curves of Krw/Krg in two-phase saturation zone decreased and the two-phase saturation zone increased,indicating that the gas relative flow ability increased.Variations of the permeability exist in sandstones with different porethroat combination types,which indicate the type-III sandstones are better reservoirs,followed by type-II sandstones and type-I sandstones.As an important factor affecting the reservoir quality,the pore-throat combination type in sandstones is the cumulative expression of lithology and diagenetic modifications with strong heterogeneity.展开更多
The damage and permeability evolution of rock under stress is of great significance to engineering safety.In this paper,the evolution law of rock damage and permeability is studied by means of acoustic emission (AE) s...The damage and permeability evolution of rock under stress is of great significance to engineering safety.In this paper,the evolution law of rock damage and permeability is studied by means of acoustic emission (AE) seepage experiment on deep roof sandstone with cyclic loading.Characterization of damage uses the changes in acoustic emission fractal characteristics and compression parameter which based on elastic modulus.The experimental results show that the AE events has fractal characteristic,in which the AE b-value and correlation dimension can represent the damage of rock.When the fractal characteristic value of AE increases,it indicates that the rock is in the compaction stage and the damage is not obvious.When the fractal characteristic value of AE drops,it indicates that the rock was damaged,and the permeabilityincrease.Under the cyclic load increasing step by step,the elastic modulus first increases and then decrease.Introducing compression parameter C to characterize the state of compaction and damage,it is obtained that the rock damage state and hydrostatic permeability show a power law function relationship with porosity and have the same monotonicity.When compression parameter is less than zero,the evolution law of permeability and damage can be described by functional relationship between hydrostatic permeability K and compression parameter C.展开更多
Rock is generally complex and heterogeneous,therefore the heterogeneity effects of effective stress and temperature on permeability should be taken into account.In this study,two-part Hooke’s model(TPHM) is introdu...Rock is generally complex and heterogeneous,therefore the heterogeneity effects of effective stress and temperature on permeability should be taken into account.In this study,two-part Hooke’s model(TPHM) is introduced to understand the influences of effective stress and temperature on permeability of soft and hard parts(two parts) of rock based on coupling thermo-hydro-mechanical tests.Under a fixed temperature level(25 ℃.35 ℃.50 ℃.65 ℃.80 ℃.90 ℃ and 95 ℃).the tests were carried out in a conventional triaxial system whereas the confining pressure was remained at 50 MPa.and the pore pressure was increased to the specified levels step by step.i.e.8 MPa,18 MPa.28 MPa.38 MPa.41 MPa,44 MPa.46 MPa and 48 MPa.The temperature-dependent relationships for two parts permeabilities are proposed on the basis of the initial test results.We point out that temperature of 65 ℃-90 ℃ is the threshold for the development of CO2-plume geothermal(CPC) reservoir sandstone cracking under low effective stress(2-9 MPa) based on the relationship between temperature and soft part permeability.Furthermore,we discuss the effect of temperature on the two parts in the rock.The results indicate that as the temperature increases from 25 ℃ to 65 ℃.the flow channel in the hard part has a stronger response to temperature than that in the soft part at a fixed effective stress level,which is opposite to the situation of effective stress.Considering that natural rock is generally heterogeneous with non-uniform pore structure,we suggest a physical interpretation of the phenomenon that before the thermal cracking threshold the two parts have different responses to temperature.展开更多
Actual sandstone micromodel was used in this work to conduct the microscopic waterflooding experiment of ultra-low sandstone reservoir,since the inside seepage characteristics of microscopic waterflooding process of C...Actual sandstone micromodel was used in this work to conduct the microscopic waterflooding experiment of ultra-low sandstone reservoir,since the inside seepage characteristics of microscopic waterflooding process of Chang 8 ultra-low permeability sandstone reservoir of Upper Triassic Yanchang formation in Huaqing region of the Ordos Basin,China is difficult to observe directly.Combined with physical property,casting thin sections,constant-rate mercury injection capillary pressure and nuclear magnetic resonance,the influence of reservoir property on the waterflooding characteristics in pores were analyzed and evaluated.Seepage paths of waterflooding characteristics were divided into four types:homogeneous seepage,reticular-homogeneous seepage,finger-reticular seepage and finger-like seepage,the waterflooding efficiency of which decreases in turn.More than 70%of residual oil occurs as flowing-around seepage and oil film.Physical property,pore structure and movable fluid characteristics are all controlled by digenesis and their impacts on waterflooding efficiency are in accordance.Generally,the pore throat radius size and distribution and movable fluid percentage are closely related to waterflooding law.展开更多
Permeability is an important property of rock in gas and oil exploration engineering, environment temperature and geo-stress have great influence on it. This paper aims to analyze the influence of thermal treatment on...Permeability is an important property of rock in gas and oil exploration engineering, environment temperature and geo-stress have great influence on it. This paper aims to analyze the influence of thermal treatment on the permeability of sandstone under triaxial compression. Based on the gas seepage tests on a sandstone specimen after different thermal treatment temperatures with different gas pressures, hydrostatic stresses and deviatoric stresses, the thermal effect on physical property of sandstone is firstly analyzed. The results show that the mass of the sandstone specimen decreases with the increase of temperature, some spalling damage and tensile crack occur on the lateral surface of the specimen at 400℃. According to the seepage test results with various gas pressures, an exponential relationship has been found between the permeability coefficient and temperature. The permeability coefficient is approximately 100 times as large as the initial value when the temperature increases from 20℃ to 800℃. The permeability evolution of the heated sandstone under hydrostatic and deviatoric compression has also been analyzed. A simplified double pore texture model is proposed which can well describe the permeability evolution of sandstone under compression with hydrostatic stress and deviatoric stress, it can be helpful to estimate the permeability of thermal treated sandstone under elastic triaxial compression.展开更多
According to the characteristics of"structural elements"(framework grain,interstitial material and pore throat structure)of low-permeability sandstone reservoir,the"step by step dissolution and separati...According to the characteristics of"structural elements"(framework grain,interstitial material and pore throat structure)of low-permeability sandstone reservoir,the"step by step dissolution and separation"acidification and acid fracturing technology has been developed and tested in field.There are three main mechanisms affecting permeability of low-permeability sandstone reservoir:(1)The mud fillings between the framework grains block the seepage channels.(2)In the process of burial,the products from crystallization caused by changes in salinity and solubility and uneven migration and variation of the syn-sedimentary formation water occupy the pores and throat between grains.(3)Under the action of gradual increase of overburden pressure,the framework grains of the rock is compacted tighter,making the seepage channels turn narrower.The"step by step dissolution and separation"acidification(acid fracturing)technology uses sustained release acid as main acidizing fluid,supramolecular solvent instead of hydrochloric acid to dissolve carbonate,and a composite system of ammonium hydrogen fluoride,fluoroboric acid,and fluorophosphoric acid to dissolve silicate,and dissolving and implementing step by step,finally reaching the goal of increasing porosity and permeability.By using the technology,the main blocking interstitial material can be dissolved effectively and the dissolution residual can be removed from the rock frame,thus expanding the effective drainage radius and increasing production and injection of single well.This technology has been proved effective by field test.展开更多
It is difficult to build an effective water flooding displacement pressure system in the middle section of a horizontal well in an ultra-low permeability sandstone reservoir.To solve this problem,this study proposes t...It is difficult to build an effective water flooding displacement pressure system in the middle section of a horizontal well in an ultra-low permeability sandstone reservoir.To solve this problem,this study proposes to use packers,sealing cannula and other tools in the same horizontal well to inject water in some fractures and produce oil from other fractures.This new energy supplement method forms a segmental synchronous injection-production system in a horizontal well.The method can reduce the distance between the injection end and the production end,and quickly establish an effective displacement system.Changing the displacement between wells to displacement between horizontal well sections,and point water flooding to linear uniform water flooding,the method can enhance water sweeping volume and shorten waterflooding response period.The research shows that:(1)In the synchronous injection and production of horizontal well in an ultra-low-permeability sandstone reservoir,the water injection section should select the section where the natural fractures and artificial fractures are in the same direction or the section with no natural fractures,and the space between two sections should be 60?80 m.(2)In addition to controlling injection pressure,periodic water injection can be taken to reduce the risk of re-opening and growth of natural fractures or formation fracture caused by the gradual increase of water injection pressure with water injection going on.(3)Field tests have verified that this method can effectively improve the output of single well and achieve good economic benefits,so it can be widely used in the development of ultra-low permeability sandstone reservoirs.展开更多
The long-term safety assessment of CO2 aquifer storage requires a deep understanding o permeability evolution during inelastic deformations in sedimentary rocks.The permeability change has been measured in the entire ...The long-term safety assessment of CO2 aquifer storage requires a deep understanding o permeability evolution during inelastic deformations in sedimentary rocks.The permeability change has been measured in the entire process from elastic,plastic,post-failure to axial stress unloading for Shirahama sandstone subjected to triaxial compressions under various confining pressures.The measurements revealed that the confining pressure plays an important role in controlling inelastic deformation behavior and the tendency of the permeability evolution.In the brittle faulting regime under a low confining pressure,significant increase in permeability accompanied by dilatancy can be observed.In brittle-ductile transition regime and ductile regime,faulting or inelastic deformation does not necessarily and significantly enhance the permeability,and the permeability during deformation is lower than their corresponding initial values.Microscopic observations revealed that the two mechanisms:(1)shear-enhanced cracking,and (2)grain crushing,are responsible for these inelastic deformation and permeability evolution tendency.The presented results suggested that storing CO2 in those sites where ductile deformation prevails may be more safe.展开更多
The concern on formation damage control of high permeability sandstone reservoir has been growing in oil industry in recent years. The invasion of particles and the filtrate of drilling fluid are proven as one of the ...The concern on formation damage control of high permeability sandstone reservoir has been growing in oil industry in recent years. The invasion of particles and the filtrate of drilling fluid are proven as one of the key factors accounting for reservoir damage. Based on the ideal packing theory, the practical software has been developed to optimize the blending proportion of several bridging agents, and the core flooding tests were conducted to evaluate return permeability of core samples contaminated with different drilling fluids. Experimental results show that the ideal packing approach can reduce the dynamic filtration rate, improve the return permeability and drawdown the breakthrough pressure, indicating that this kind of drilling fluids can meet the demands of formation damage control for high permeability sandstone reservoirs. Some applying procedures for formation damage control are also proposed in this paper.展开更多
The tight sandstones of the Upper Triassic Xujiahe Formation(T_3x) constitute important gas reservoirs in western Sichuan.The Xujiahe sandstones are characterized by low to very low porosity (av.5.22%and 3.62%) fo...The tight sandstones of the Upper Triassic Xujiahe Formation(T_3x) constitute important gas reservoirs in western Sichuan.The Xujiahe sandstones are characterized by low to very low porosity (av.5.22%and 3.62%) for the T_3x^4 and T_3x^2 sandstones,respectively),extremely low permeability(av. 0.060 mD and 0.058 mD for the T_3x^4 and T_3x^2 sandstones,respectively),strong heterogeneity,micronano pore throat,and poor pore throat sorting.As a result of complex pore structure and the occurrence of fractures,weak correlations exist between petrophysical properties and pore throat size,demonstrating that porosity or pore throat size alone does not serve as a good permeability predictor.Much improved correlations can be obtained between permeability and porosity when pore throat radii are incorporated. Correlations between porosity,permeability,and pore throat radii corresponding to different saturations of mercury were established,showing that the pore throat radius at 20%mercury saturation(R_(20)) is the best permeability predictor.Multivariate regression analysis and artificial neural network(ANN) methods were used to establish permeability prediction models and the unique characteristics of neural networks enable them to be more successful in predicting permeability than the multivariate regression model.In addition, four petrophysical rock types can be identified based on the distributions of R_(20),each exhibiting distinct petrophysical properties and corresponding to different flow units.展开更多
The seepage evolution characteristic of brittle rock materials is very significant for the stability and safety of rock engineering. In this research, a series of conventional triaxial compression and gas seepage test...The seepage evolution characteristic of brittle rock materials is very significant for the stability and safety of rock engineering. In this research, a series of conventional triaxial compression and gas seepage tests were carded out on sandstone specimens with a rock mechanics servo-controlled testing system. Based on the experimental results, the relationship between permeability and deformation is firstly analyzed in detail. The results show that the permeabilityaxial strain curve can be divided into the following five phases: the phase of micro-defects closure, the phase of linear elastic deformation, the phase of nonlinear deformation, the phase of post-peak stress softening and the phase of residual strength. The seepage evolution characteristic is also closely correlated with the volumetric deformation according to the relationship between permeability and volumetric strain. It is found that the gas seepage pressure has a great effect on the permeability evolution, i.e. permeability coefficients increase with increasing gas seepage pressures. Finally, the influence of gas seepage pressures on the failure behavior of brittle sandstone specimens is discussed.展开更多
The seismoelectric effects induced from the coupling of the seismic wave field and the electromagnetic field depend on the physical properties of the reservoir rocks. We built an experimental apparatus to measure the ...The seismoelectric effects induced from the coupling of the seismic wave field and the electromagnetic field depend on the physical properties of the reservoir rocks. We built an experimental apparatus to measure the seismoelectric effects in saturated sandstone samples. We recorded the seismoelectric signals induced by P-waves and studied the attenuation of the seismoelectric signals induced at the sandstone interface. The analysis of the seismoelectric effects suggests that the minimization of the potential difference between the reference potential and the baseline potential of the seismoelectric disturbance area is critical to the accuracy of the seismoelectric measurements and greatly improves the detectability of the seismoelectric signals. The experimental results confirmed that the seismoelectric coupling of the seismic wave field and the electromagnetic field is induced when seismic wave propagating in a fluid-saturated porous medium. The amplitudes of the seismoelectric signals decrease linearly with increasing distance between the source and the interface, and decay exponentially with increasing distance between the receiver and the interface. The seismoelectric response of sandstone samples with different permeabilities suggests that the seismoelectric response is directly related to permeability, which should help obtaining the permeability of reservoirs in the future.展开更多
基金Supported by the Natural Science Foundation of Shaanxi Province,China(2010JM5003)
文摘The influence of pore structure difference on rock electrical characteristics of reservoir and oil reservoir was analyzed taking Triassic Chang 6 reservoir in Block Yanwumao in the middle of Ordos Basin as an example. The relationship between the pore structure difference and the low resistivity oil layer was revealed and demonstrated through core observation, lab experiments, geological research, well log interpretation and trial production etc. The results show that there were two kinds of oil layers in Chang 6 oil layer set, normal oil layer and low resistivity oil layer in the region, corresponding to two types of pore structures, pore type mono-medium and micro-fracture-pore type double-medium; the development of micro-fracture changed greatly the micro-pore structure of the reservoir, and the pore structure difference had an important influence on the rock electrical characteristics of the extra-low permeability sandstone reservoir and oil reservoir; the normal oil layers had obvious characteristics of pore-type mono-medium, and were concentrated in Chang 61, Chang 6232 and Chang 62; the low resistivity oil layers had obvious characteristics of micro-fracture-pore type double-medium, which were mainly distributed in Chang 612 and Chang 63. The mud filtrate penetrated deep into the oil layers along the micro-cracks, leading to sharp reduction of resistivity, and thus low resistivity of the oil layer; the low resistivity oil layers had better storage capacity and higher productivity than the normal oil layers.
基金the funding support provided by the National Natural Science Foundation of China (Grant Nos. U1967208 and 42172315)。
文摘In order to improve CO_(2) capture,utilization and storage(CCUS) to solve carbon emission,sandstone from the Triassic Liujiagou Formation(LF) from the Ordos Basin in China was investigated using permeability tests and computed X-ray tomography(CT) scanning.The presence of reactive minerals within the geological CO_(2) sequestration target storage formation can allow reaction with injected CO_(2),which changes the porosity and permeability of the LF beds,affecting storage effectiveness.To investigate the effect of chemical reactions on the pore structure and permeability of sandstone cores representing the LF CO_(2) storage,tests were conducted to analyze the changes in porosity and permeability of sandstone cores induced by CO_(2)-saturated brine at different reaction times(28-day maximum reaction period).Porosity and permeability of the sandstone increased after reaction with CO_(2)-saturated brine due to mineral dissolution.The sandstone exhibited an increase in porosity and permeability after 15 days of reaction with CO_(2)-saturated brine.Moreover,there was an increase in the volume of large pores in the sandstone after the 28-day period.The pore network of the sandstone was established through CT results,and the porosity calculated based on the obtained pore network was close to that measured in the test,demonstrating the feasibility to use CT to study the evolution of the microstructure of sandstone after long-time exposure to CO_(2)-saturated brine.
基金supported by the National Natural Science Foundation of China(Grant No.11705086)the National Science Foundation of Hunan Province,China(Grant No.2018JJ3424)the Foundation of Hunan Educational Committee(Grant No.16C1387).
文摘Low-frequency vibrations can effectively improve natural sandstone permeability,and higher vibration frequency is associated with larger permeability.However,the optimum permeability and permeability evolution mechanism for uranium leaching and the relationship between permeability and the change of chemical reactive rate affecting uranium leaching have not been determined.To solve the above problems,in this study,identical homogeneous sandstone samples were selected to simulate lowpermeability sandstone;a permeability evolution model considering the combined action of vibration stress,pore water pressure,water flow impact force,and chemical erosion was established;and vibration leaching experiments were performed to test the model accuracy.Both the permeability and chemical reactions were found to simultaneously restrict U6þleaching,and the vibration treatment increased the permeability,causing the U6þleaching reaction to no longer be diffusion-constrained but to be primarily controlled by the reaction rate.Changes of the model calculation parameters were further analyzed to determine the permeability evolution mechanism under the influence of vibration and chemical erosion,to prove the correctness of the mechanism according to the experimental results,and to develop a new method for determining the optimum permeability in uranium leaching.The uranium leaching was found to primarily follow a process consisting of(1)a permeability control stage,(2)achieving the optimum permeability,(3)a chemical reactive rate control stage,and(4)a channel flow stage.The resolution of these problems is of great significance for facilitating the application and promotion of lowfrequency vibration in the CO_(2)+O_(2) leaching process.
文摘Evaluating the permeability and irreducible water saturation of tight sandstone reservoirs is challenging.This study uses distribution functions to fit measured NMR T_(2)distributions of tight sandstone reservoirs and extract parameters for characterizing pore size distribution.These parameters are then used to establish prediction models for permeability and irreducible water saturation of reservoirs.Results of comparing the fit of the T_(2)distributions by the Gauss and Weibull distribution functions show that the fitting accuracy with the Weibull distribution function is higher.The physical meaning of the statistical parameters of the Weibull distribution function is defined to establish nonlinear prediction models of permeability and irreducible water saturation using the radial basis function(RBF)method.Correlation coefficients between the predicted values by the established models and the measured values of the tight sandstone core samples are 0.944 for permeability and 0.851 for irreducible water saturation,which highlight the effectiveness of the prediction models.
基金supported by the National Natural Science Foundation Project (No.40772088)the National Basic Research Program ("973" Program,Grant No. 2006CB202305)
文摘Hydrocarbon resources in low-permeability sandstones are very abundant and are extensively distributed. Low-permeability reservoirs show several unique characteristics, including lack of a definite trap boundary or caprock, limited buoyancy effect, complex oil-gas-water distribution, without obvious oil-gas-water interfaces, and relatively low oil (gas) saturation. Based on the simulation experiments of oil accumulation in low-permeability sandstone (oil displacing water), we study the migration and accumulation characteristics of non-Darcy oil flow, and discuss the values and influencing factors of relative permeability which is a key parameter characterizing oil migration and accumulation in low-permeability sandstone. The results indicate that: 1) Oil migration (oil displacing water) in low- permeability sandstone shows non-Darcy percolation characteristics, and there is a threshold pressure gradient during oil migration and accumulation, which has a good negative correlation with permeability and apparent fluidity; 2) With decrease of permeability and apparent fluidity and increase of fluid viscosity, the percolation curve is closer to the pressure gradient axis and the threshold pressure gradient increases. When the apparent fluidity is more than 1.0, the percolation curve shows modified Darcy flow characteristics, while when the apparent fluidity up" non-Darcy percolation curve; 3) Oil-water is less than 1.0, the percolation curve is a "concave- two-phase relative permeability is affected by core permeability, fluid viscosity, apparent fluidity, and injection drive force; 4) The oil saturation of low- permeability sandstone reservoirs is mostly within 35%-60%, and the oil saturation also has a good positive correlation with the permeability and apparent fluidity.
基金supported by a grant from the National Natural Science Foundation of China(Grant No.50774064)the Open Fund PLN0802 of the State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Southwest Petroleum University)
文摘To study the relative sensitivity of permeability to pore pressure Pp and confining pressure Pc for clay-rich rocks, permeability measurements were performed on samples of four clay-rich sandstones. A new method (hereafter denoted the "slide method") was developed and used for analyzing the permeability data obtained. The effective pressure coefficients for permeability nk were calculated. The values of nk were found to be greater than 1.0 and insensitive to changes in pressure. These results confirmed observations previously made on clay-rich rocks. Also, the coefficients nk obtained had different characteristics for different samples because of differences in the types of clay they contained. The effective pressure law (σeff=Pc-nkPp) determined using the slide method gave better results about k(oefr) than classic Terzaghi's law (σeff=Pc-nkPp).
基金supported by Open Fund (PLC201203) of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Chengdu University of Technology)Major Project of Education Department in Sichuan Province (13ZA0177)
文摘Due to inherent limits of data acquisition and geophysical data resolution, there are large uncertainties in the characterization of subsurface fractures. However, outcrop analogies can provide qualitative and quantitative information on a large number of fractures, based on which the accuracy of subsurface fracture characterization can be improved. Here we take the tectonic fracture modeling of an ultra-low permeability sandstone reservoir based on an outcrop analogy, a case study of the Chang6t~ Formation of the Upper Triassic Yanchang Group of the Wangyao Oilfield in the Ordos Basin of China. An outcrop at the edge of the basin is a suitable analog for the reservoir, but the prerequisite is that they must have equivalent previous stress fields, similar final structural characteristics, relative timing and an identical depositional environment and diagenesis. The relationship among fracture density, rock type and bed thickness based on the outcrop is one of the most important fracture distribution models, and can be used to interpret fracture density in individual wells quantitatively. Fracture orientation, dip, geometry and scale, also should be described and measured in the outcrop, and can be used together with structure restoration and single well fracture density interpretation to guide fracture intensity prediction on bed surfaces and to constrain the construction of the 3D fracture geometry model of the subsurface reservoir. The application of the above principles shows the outcrop-based tectonic fracture models of the target ultra-low permeability sandstone reservoir are consistent with fractures inferred from microseismic interpretation and tracer tests. This illustrated that the fracture modeling based on the outcrop analogy is reliable and can reduce the uncertainty in stochastic fracture modeling.
基金supported by the National Basic Research Program of China (973 Program) (Grant No. 2011CB013503)the National Natural Science Foundation of China (Grant No. 51374112)the Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University (ZQN-PY112)
文摘Geological disasters will happen in cold regions because of the effects of freeze-thaw cycles on rocks or soils, so studying the effects of these cycles on the mechanical characteristics and permeability properties of rocks is very important. In this study, red sandstone samples were frozen and thawed with o, 4, 8 and 12 cycles, each cycle including 12 h of freezing and 12 h of thawing. The P-wave velocities of these samples were measured, and the mechanical properties and evolution of the steady-state permeabilities were investigated in a series of uniaxial and triaxial compression tests. Experimental results show that, with the increasing of cyclic freeze-thaw times, the P-wave velocity of the red sandstone decreases. The number of freeze-thaw cycles has a significant influence on the uniaxial compressive strength, elastic modulus, cohesion, and angle of internal friction. The evolution of permeability of the rock samples after cycles of freeze-thaw in a complete stress-strain process under triaxial compression is closely related to the variation of the microstructure in the rock. There is a highly corresponding relationship between volumetric strain and permeability with axial strain in all stages of the stress-strain behaviour.
基金supported by the Natural Science Foundation of China (grant No. 41772130)
文摘With the aim of better understanding the tight gas reservoirs in the Zizhou area of east Ordos Basin,a total of 222 samples were collected from 50 wells for a series of experiments.In this study,three pore-throat combination types in sandstones were revealed and confirmed to play a controlling role in the distribution of throat size and the characteristics of gas-water relative permeability.The type-I sandstones are dominated by intercrystalline micropores connected by cluster throats,of which the distribution curves of throat size are narrow and have a strong single peak(peak ratio>30%).The pores in the type-II sandstones dominantly consist of secondary dissolution pores and intercrystalline micropores,and throats mainly occur as slice-shaped throats along cleavages between rigid grain margins and cluster throats in clay cement.The distribution curves of throat size for the type-II sandstones show a bimodal distribution with a substantial low-value region between the peaks(peak ratio<15%).Primary intergranular pores and secondary intergranular pores are mainly found in type-III samples,which are connected by various throats.The throat size distribution curves of type-III sandstones show a nearly normal distribution with low kurtosis(peak ratio<10%),and the micro-scale throat radii(>0.5μm)constitute a large proportion.From type-I to type-III sandstones,the irreducible water saturation(Swo)decreased;furthermore,the slope of the curves of Krw/Krg in two-phase saturation zone decreased and the two-phase saturation zone increased,indicating that the gas relative flow ability increased.Variations of the permeability exist in sandstones with different porethroat combination types,which indicate the type-III sandstones are better reservoirs,followed by type-II sandstones and type-I sandstones.As an important factor affecting the reservoir quality,the pore-throat combination type in sandstones is the cumulative expression of lithology and diagenetic modifications with strong heterogeneity.
基金The present work is supported by the National Natural Science Foundation of China(51904309,51674266)the Yueqi Outstanding Scholar Program of CUMTB and the State Key Research Development Program of China(2016YFC0600704).
文摘The damage and permeability evolution of rock under stress is of great significance to engineering safety.In this paper,the evolution law of rock damage and permeability is studied by means of acoustic emission (AE) seepage experiment on deep roof sandstone with cyclic loading.Characterization of damage uses the changes in acoustic emission fractal characteristics and compression parameter which based on elastic modulus.The experimental results show that the AE events has fractal characteristic,in which the AE b-value and correlation dimension can represent the damage of rock.When the fractal characteristic value of AE increases,it indicates that the rock is in the compaction stage and the damage is not obvious.When the fractal characteristic value of AE drops,it indicates that the rock was damaged,and the permeabilityincrease.Under the cyclic load increasing step by step,the elastic modulus first increases and then decrease.Introducing compression parameter C to characterize the state of compaction and damage,it is obtained that the rock damage state and hydrostatic permeability show a power law function relationship with porosity and have the same monotonicity.When compression parameter is less than zero,the evolution law of permeability and damage can be described by functional relationship between hydrostatic permeability K and compression parameter C.
基金financially supported by the International Science&Technology Cooperation Program of China(Grant No.2012DFA60760)
文摘Rock is generally complex and heterogeneous,therefore the heterogeneity effects of effective stress and temperature on permeability should be taken into account.In this study,two-part Hooke’s model(TPHM) is introduced to understand the influences of effective stress and temperature on permeability of soft and hard parts(two parts) of rock based on coupling thermo-hydro-mechanical tests.Under a fixed temperature level(25 ℃.35 ℃.50 ℃.65 ℃.80 ℃.90 ℃ and 95 ℃).the tests were carried out in a conventional triaxial system whereas the confining pressure was remained at 50 MPa.and the pore pressure was increased to the specified levels step by step.i.e.8 MPa,18 MPa.28 MPa.38 MPa.41 MPa,44 MPa.46 MPa and 48 MPa.The temperature-dependent relationships for two parts permeabilities are proposed on the basis of the initial test results.We point out that temperature of 65 ℃-90 ℃ is the threshold for the development of CO2-plume geothermal(CPC) reservoir sandstone cracking under low effective stress(2-9 MPa) based on the relationship between temperature and soft part permeability.Furthermore,we discuss the effect of temperature on the two parts in the rock.The results indicate that as the temperature increases from 25 ℃ to 65 ℃.the flow channel in the hard part has a stronger response to temperature than that in the soft part at a fixed effective stress level,which is opposite to the situation of effective stress.Considering that natural rock is generally heterogeneous with non-uniform pore structure,we suggest a physical interpretation of the phenomenon that before the thermal cracking threshold the two parts have different responses to temperature.
基金Project(2015KTCL01-09)supported by the Innovation Project of Science and Technology of Shaanxi Province,ChinaProject(2015M582699)supported by the China Postdoctoral Science Foundation+1 种基金Project(2016JQ4022)supported by the Natural Science Foundation Research Project of Shaanxi Province,ChinaProject(41702146)supported by the National Natural Science Foundation of China
文摘Actual sandstone micromodel was used in this work to conduct the microscopic waterflooding experiment of ultra-low sandstone reservoir,since the inside seepage characteristics of microscopic waterflooding process of Chang 8 ultra-low permeability sandstone reservoir of Upper Triassic Yanchang formation in Huaqing region of the Ordos Basin,China is difficult to observe directly.Combined with physical property,casting thin sections,constant-rate mercury injection capillary pressure and nuclear magnetic resonance,the influence of reservoir property on the waterflooding characteristics in pores were analyzed and evaluated.Seepage paths of waterflooding characteristics were divided into four types:homogeneous seepage,reticular-homogeneous seepage,finger-reticular seepage and finger-like seepage,the waterflooding efficiency of which decreases in turn.More than 70%of residual oil occurs as flowing-around seepage and oil film.Physical property,pore structure and movable fluid characteristics are all controlled by digenesis and their impacts on waterflooding efficiency are in accordance.Generally,the pore throat radius size and distribution and movable fluid percentage are closely related to waterflooding law.
基金the Natural Science Foundation of Jiangsu Province for Distinguished Young Scholars (Grant BK20150005)the Fundamental Research Funds for the Central Universities (China University of Mining and Technology: Grant 2015XKZD05).
文摘Permeability is an important property of rock in gas and oil exploration engineering, environment temperature and geo-stress have great influence on it. This paper aims to analyze the influence of thermal treatment on the permeability of sandstone under triaxial compression. Based on the gas seepage tests on a sandstone specimen after different thermal treatment temperatures with different gas pressures, hydrostatic stresses and deviatoric stresses, the thermal effect on physical property of sandstone is firstly analyzed. The results show that the mass of the sandstone specimen decreases with the increase of temperature, some spalling damage and tensile crack occur on the lateral surface of the specimen at 400℃. According to the seepage test results with various gas pressures, an exponential relationship has been found between the permeability coefficient and temperature. The permeability coefficient is approximately 100 times as large as the initial value when the temperature increases from 20℃ to 800℃. The permeability evolution of the heated sandstone under hydrostatic and deviatoric compression has also been analyzed. A simplified double pore texture model is proposed which can well describe the permeability evolution of sandstone under compression with hydrostatic stress and deviatoric stress, it can be helpful to estimate the permeability of thermal treated sandstone under elastic triaxial compression.
基金Supported by the China National Science and Technology Major Project(2017ZX05049-004)
文摘According to the characteristics of"structural elements"(framework grain,interstitial material and pore throat structure)of low-permeability sandstone reservoir,the"step by step dissolution and separation"acidification and acid fracturing technology has been developed and tested in field.There are three main mechanisms affecting permeability of low-permeability sandstone reservoir:(1)The mud fillings between the framework grains block the seepage channels.(2)In the process of burial,the products from crystallization caused by changes in salinity and solubility and uneven migration and variation of the syn-sedimentary formation water occupy the pores and throat between grains.(3)Under the action of gradual increase of overburden pressure,the framework grains of the rock is compacted tighter,making the seepage channels turn narrower.The"step by step dissolution and separation"acidification(acid fracturing)technology uses sustained release acid as main acidizing fluid,supramolecular solvent instead of hydrochloric acid to dissolve carbonate,and a composite system of ammonium hydrogen fluoride,fluoroboric acid,and fluorophosphoric acid to dissolve silicate,and dissolving and implementing step by step,finally reaching the goal of increasing porosity and permeability.By using the technology,the main blocking interstitial material can be dissolved effectively and the dissolution residual can be removed from the rock frame,thus expanding the effective drainage radius and increasing production and injection of single well.This technology has been proved effective by field test.
基金Supported by the China National Science and Technology Major Project(2016ZX05050)
文摘It is difficult to build an effective water flooding displacement pressure system in the middle section of a horizontal well in an ultra-low permeability sandstone reservoir.To solve this problem,this study proposes to use packers,sealing cannula and other tools in the same horizontal well to inject water in some fractures and produce oil from other fractures.This new energy supplement method forms a segmental synchronous injection-production system in a horizontal well.The method can reduce the distance between the injection end and the production end,and quickly establish an effective displacement system.Changing the displacement between wells to displacement between horizontal well sections,and point water flooding to linear uniform water flooding,the method can enhance water sweeping volume and shorten waterflooding response period.The research shows that:(1)In the synchronous injection and production of horizontal well in an ultra-low-permeability sandstone reservoir,the water injection section should select the section where the natural fractures and artificial fractures are in the same direction or the section with no natural fractures,and the space between two sections should be 60?80 m.(2)In addition to controlling injection pressure,periodic water injection can be taken to reduce the risk of re-opening and growth of natural fractures or formation fracture caused by the gradual increase of water injection pressure with water injection going on.(3)Field tests have verified that this method can effectively improve the output of single well and achieve good economic benefits,so it can be widely used in the development of ultra-low permeability sandstone reservoirs.
文摘The long-term safety assessment of CO2 aquifer storage requires a deep understanding o permeability evolution during inelastic deformations in sedimentary rocks.The permeability change has been measured in the entire process from elastic,plastic,post-failure to axial stress unloading for Shirahama sandstone subjected to triaxial compressions under various confining pressures.The measurements revealed that the confining pressure plays an important role in controlling inelastic deformation behavior and the tendency of the permeability evolution.In the brittle faulting regime under a low confining pressure,significant increase in permeability accompanied by dilatancy can be observed.In brittle-ductile transition regime and ductile regime,faulting or inelastic deformation does not necessarily and significantly enhance the permeability,and the permeability during deformation is lower than their corresponding initial values.Microscopic observations revealed that the two mechanisms:(1)shear-enhanced cracking,and (2)grain crushing,are responsible for these inelastic deformation and permeability evolution tendency.The presented results suggested that storing CO2 in those sites where ductile deformation prevails may be more safe.
文摘The concern on formation damage control of high permeability sandstone reservoir has been growing in oil industry in recent years. The invasion of particles and the filtrate of drilling fluid are proven as one of the key factors accounting for reservoir damage. Based on the ideal packing theory, the practical software has been developed to optimize the blending proportion of several bridging agents, and the core flooding tests were conducted to evaluate return permeability of core samples contaminated with different drilling fluids. Experimental results show that the ideal packing approach can reduce the dynamic filtration rate, improve the return permeability and drawdown the breakthrough pressure, indicating that this kind of drilling fluids can meet the demands of formation damage control for high permeability sandstone reservoirs. Some applying procedures for formation damage control are also proposed in this paper.
基金supported by the Important National Science&Technology Specific Project (2008ZX05002-004)
文摘The tight sandstones of the Upper Triassic Xujiahe Formation(T_3x) constitute important gas reservoirs in western Sichuan.The Xujiahe sandstones are characterized by low to very low porosity (av.5.22%and 3.62%) for the T_3x^4 and T_3x^2 sandstones,respectively),extremely low permeability(av. 0.060 mD and 0.058 mD for the T_3x^4 and T_3x^2 sandstones,respectively),strong heterogeneity,micronano pore throat,and poor pore throat sorting.As a result of complex pore structure and the occurrence of fractures,weak correlations exist between petrophysical properties and pore throat size,demonstrating that porosity or pore throat size alone does not serve as a good permeability predictor.Much improved correlations can be obtained between permeability and porosity when pore throat radii are incorporated. Correlations between porosity,permeability,and pore throat radii corresponding to different saturations of mercury were established,showing that the pore throat radius at 20%mercury saturation(R_(20)) is the best permeability predictor.Multivariate regression analysis and artificial neural network(ANN) methods were used to establish permeability prediction models and the unique characteristics of neural networks enable them to be more successful in predicting permeability than the multivariate regression model.In addition, four petrophysical rock types can be identified based on the distributions of R_(20),each exhibiting distinct petrophysical properties and corresponding to different flow units.
基金supported by the National Natural Science Foundation of China (Grant 41272344)the National Basic Research Program (973) of China (Grant 2014CB046905)+3 种基金the Natural Science Foundation of Jiangsu Province of China (Grant BK2012568)the Team Project Funded by 2014 Jiangsu Innovation and Entrepreneurship Programthe Fundamental Research Funds for the Central Universities (China University of Mining and Technology) (Grants 2014YC10 and 2014XT03)Outstanding Innovation Team Project in China University of Mining and Technology (Grant 2014QN002)
文摘The seepage evolution characteristic of brittle rock materials is very significant for the stability and safety of rock engineering. In this research, a series of conventional triaxial compression and gas seepage tests were carded out on sandstone specimens with a rock mechanics servo-controlled testing system. Based on the experimental results, the relationship between permeability and deformation is firstly analyzed in detail. The results show that the permeabilityaxial strain curve can be divided into the following five phases: the phase of micro-defects closure, the phase of linear elastic deformation, the phase of nonlinear deformation, the phase of post-peak stress softening and the phase of residual strength. The seepage evolution characteristic is also closely correlated with the volumetric deformation according to the relationship between permeability and volumetric strain. It is found that the gas seepage pressure has a great effect on the permeability evolution, i.e. permeability coefficients increase with increasing gas seepage pressures. Finally, the influence of gas seepage pressures on the failure behavior of brittle sandstone specimens is discussed.
基金supported by the National Science and Technology Major Project(No.2016ZX05018-005)the New Methods,New Technology Research of Geophysical Prospecting(No.2014A-3612)
文摘The seismoelectric effects induced from the coupling of the seismic wave field and the electromagnetic field depend on the physical properties of the reservoir rocks. We built an experimental apparatus to measure the seismoelectric effects in saturated sandstone samples. We recorded the seismoelectric signals induced by P-waves and studied the attenuation of the seismoelectric signals induced at the sandstone interface. The analysis of the seismoelectric effects suggests that the minimization of the potential difference between the reference potential and the baseline potential of the seismoelectric disturbance area is critical to the accuracy of the seismoelectric measurements and greatly improves the detectability of the seismoelectric signals. The experimental results confirmed that the seismoelectric coupling of the seismic wave field and the electromagnetic field is induced when seismic wave propagating in a fluid-saturated porous medium. The amplitudes of the seismoelectric signals decrease linearly with increasing distance between the source and the interface, and decay exponentially with increasing distance between the receiver and the interface. The seismoelectric response of sandstone samples with different permeabilities suggests that the seismoelectric response is directly related to permeability, which should help obtaining the permeability of reservoirs in the future.