This paper tries to demarcate the evolving process of decategorization into three periods and exemplify it by studying the Chinese character Mao.The exemplification shows the correctness of the demarcation.
A series of Reed Pulps were prepared in which the level of Non-Process Elements(NPEs), including calcium, manganese,copper,iron were seclectively enriched and depleted, these pulps were then oxygen delignification,and...A series of Reed Pulps were prepared in which the level of Non-Process Elements(NPEs), including calcium, manganese,copper,iron were seclectively enriched and depleted, these pulps were then oxygen delignification,and the pulps were characterized according to kappa number,viscosity,brightness. The results indicated that the enrichment of NPEs have an important effulence on delignification,pulp viscosity and brightness, iron is the most harmful during oxygen delignification but manganese is just like a kind of aid and can enhance brightness and delignification.展开更多
Many early Japanese books record a large amount of information,including historical politics,economics,culture,and so on,which are all valuable legacies.These books are waiting to be reorganized at the moment.However,...Many early Japanese books record a large amount of information,including historical politics,economics,culture,and so on,which are all valuable legacies.These books are waiting to be reorganized at the moment.However,a large amount of the books are described by Kuzushiji,a type of handwriting cursive script that is no longer in use today and only readable by a few experts.Therefore,researchers are trying to detect and recognise the characters from these books through modern techniques.Unfortunately,the characteristics of the Kuzushiji,such as Connect-Separate-characters and Manyvariation,hinder the modern technique assisted re-organisation.Connect-Separatecharacters refer to the case of some characters connecting each other or one character being separated into unconnected parts,which makes character detection hard.Manyvariation is one of the typical characteristics of Kuzushiji,defined as the case that the same character has several variations even if they are written by the same person in the same book at the same time,which increases the difficulty of character recognition.In this sense,this paper aims to construct an early Japanese book reorganisation system by combining image processing and deep learning techniques.The experimentation has been done by testing two early Japanese books.In terms of character detection,the final Recall,Precision and F-value reaches 79.8%,80.3%,and 80.0%,respectively.The deep learning based character recognition accuracy of Top3 reaches 69.52%,and the highest recognition rate reaches 82.57%,which verifies the effectiveness of our proposal.展开更多
Ancient Chinese characters, typically the ideographic characters on bones and bronze before Shang Dynasty(16th—11th century B.C.), are valuable culture legacy of history. However the recognition of Ancient Chinese ch...Ancient Chinese characters, typically the ideographic characters on bones and bronze before Shang Dynasty(16th—11th century B.C.), are valuable culture legacy of history. However the recognition of Ancient Chinese characters has been the task of paleography experts for long. With the help of modern computer technique, everyone can expect to be able to recognize the characters and understand the ancient inscriptions. This research is aimed to help people recognize and understand those ancient Chinese characters by combining Chinese paleography theory and computer information processing technology. Based on the analysis of ancient character features, a method for structural character recognition is proposed. The important characteristics of strokes and basic components or radicals used in recognition are introduced in detail. A system was implemented based on above method to show the effectiveness of the method.展开更多
Objective:This study aimed to explore the orthographic processing of simplified Chinese characters in developmental dyslexic children in Kashgar,Xinjiang,China,and provide a theoretical basis for intervention strategi...Objective:This study aimed to explore the orthographic processing of simplified Chinese characters in developmental dyslexic children in Kashgar,Xinjiang,China,and provide a theoretical basis for intervention strategies for developmental dyslexia in Chinese.Methods:Using event-related potential(ERP)measures,18 developmental dyslexic children and 23 typically developing children performed a character decision task with three types of stimuli:real characters(RCs),pseudocharacters(PCs),and noncharacters(NCs).Results:Behavioral results showed that the control children displayed a faster and higher accurate performance than the dyslexic children across PCs and NCs.ERP data revealed that the RCs and PCs elicited a stronger P200 than the NCs.Compared with the RCs and NCs,children in the control group showed more N400 negatives for PCs.It is worth mentioning that dyslexic children did not show any difference on N400,which reflected the insufficient orthographic processing of dyslexic children in China.Conclusion:These results show that Chinese dyslexic children had orthographic processing defects.展开更多
In recent years,researchers in handwriting recognition analysis relating to indigenous languages have gained significant internet among research communities.The recent developments of artificial intelligence(AI),natur...In recent years,researchers in handwriting recognition analysis relating to indigenous languages have gained significant internet among research communities.The recent developments of artificial intelligence(AI),natural language processing(NLP),and computational linguistics(CL)find useful in the analysis of regional low resource languages.Automatic lexical task participation might be elaborated to various applications in the NLP.It is apparent from the availability of effective machine recognition models and open access handwritten databases.Arabic language is a commonly spoken Semitic language,and it is written with the cursive Arabic alphabet from right to left.Arabic handwritten Character Recognition(HCR)is a crucial process in optical character recognition.In this view,this paper presents effective Computational linguistics with Deep Learning based Handwriting Recognition and Speech Synthesizer(CLDL-THRSS)for Indigenous Language.The presented CLDL-THRSS model involves two stages of operations namely automated handwriting recognition and speech recognition.Firstly,the automated handwriting recognition procedure involves preprocessing,segmentation,feature extraction,and classification.Also,the Capsule Network(CapsNet)based feature extractor is employed for the recognition of handwritten Arabic characters.For optimal hyperparameter tuning,the cuckoo search(CS)optimization technique was included to tune the parameters of the CapsNet method.Besides,deep neural network with hidden Markov model(DNN-HMM)model is employed for the automatic speech synthesizer.To validate the effective performance of the proposed CLDL-THRSS model,a detailed experimental validation process takes place and investigates the outcomes interms of different measures.The experimental outcomes denoted that the CLDL-THRSS technique has demonstrated the compared methods.展开更多
Handwritten signature and character recognition has become challenging research topic due to its numerous applications. In this paper, we proposed a system that has three sub-systems. The three subsystems focus on off...Handwritten signature and character recognition has become challenging research topic due to its numerous applications. In this paper, we proposed a system that has three sub-systems. The three subsystems focus on offline recognition of handwritten English alphabetic characters (uppercase and lowercase), numeric characters (0 - 9) and individual signatures respectively. The system includes several stages like image preprocessing, the post-processing, the segmentation, the detection of the required amount of the character and signature, feature extraction and finally Neural Network recognition. At first, the scanned image is filtered after conversion of the scanned image into a gray image. Then image cropping method is applied to detect the signature. Then an accurate recognition is ensured by post-processing the cropped images. MATLAB has been used to design the system. The subsystems are then tested for several samples and the results are found satisfactory at about 97% success rate. The quality of the image plays a vital role as the images of poor or mediocre quality may lead to unsuccessful recognition and verification.展开更多
文摘This paper tries to demarcate the evolving process of decategorization into three periods and exemplify it by studying the Chinese character Mao.The exemplification shows the correctness of the demarcation.
文摘A series of Reed Pulps were prepared in which the level of Non-Process Elements(NPEs), including calcium, manganese,copper,iron were seclectively enriched and depleted, these pulps were then oxygen delignification,and the pulps were characterized according to kappa number,viscosity,brightness. The results indicated that the enrichment of NPEs have an important effulence on delignification,pulp viscosity and brightness, iron is the most harmful during oxygen delignification but manganese is just like a kind of aid and can enhance brightness and delignification.
文摘Many early Japanese books record a large amount of information,including historical politics,economics,culture,and so on,which are all valuable legacies.These books are waiting to be reorganized at the moment.However,a large amount of the books are described by Kuzushiji,a type of handwriting cursive script that is no longer in use today and only readable by a few experts.Therefore,researchers are trying to detect and recognise the characters from these books through modern techniques.Unfortunately,the characteristics of the Kuzushiji,such as Connect-Separate-characters and Manyvariation,hinder the modern technique assisted re-organisation.Connect-Separatecharacters refer to the case of some characters connecting each other or one character being separated into unconnected parts,which makes character detection hard.Manyvariation is one of the typical characteristics of Kuzushiji,defined as the case that the same character has several variations even if they are written by the same person in the same book at the same time,which increases the difficulty of character recognition.In this sense,this paper aims to construct an early Japanese book reorganisation system by combining image processing and deep learning techniques.The experimentation has been done by testing two early Japanese books.In terms of character detection,the final Recall,Precision and F-value reaches 79.8%,80.3%,and 80.0%,respectively.The deep learning based character recognition accuracy of Top3 reaches 69.52%,and the highest recognition rate reaches 82.57%,which verifies the effectiveness of our proposal.
基金Supported by Seminar of National Social Funds Project(12&ZD234)
文摘Ancient Chinese characters, typically the ideographic characters on bones and bronze before Shang Dynasty(16th—11th century B.C.), are valuable culture legacy of history. However the recognition of Ancient Chinese characters has been the task of paleography experts for long. With the help of modern computer technique, everyone can expect to be able to recognize the characters and understand the ancient inscriptions. This research is aimed to help people recognize and understand those ancient Chinese characters by combining Chinese paleography theory and computer information processing technology. Based on the analysis of ancient character features, a method for structural character recognition is proposed. The important characteristics of strokes and basic components or radicals used in recognition are introduced in detail. A system was implemented based on above method to show the effectiveness of the method.
基金supported in part by National Natural Science Foundation of China(No.81760597).
文摘Objective:This study aimed to explore the orthographic processing of simplified Chinese characters in developmental dyslexic children in Kashgar,Xinjiang,China,and provide a theoretical basis for intervention strategies for developmental dyslexia in Chinese.Methods:Using event-related potential(ERP)measures,18 developmental dyslexic children and 23 typically developing children performed a character decision task with three types of stimuli:real characters(RCs),pseudocharacters(PCs),and noncharacters(NCs).Results:Behavioral results showed that the control children displayed a faster and higher accurate performance than the dyslexic children across PCs and NCs.ERP data revealed that the RCs and PCs elicited a stronger P200 than the NCs.Compared with the RCs and NCs,children in the control group showed more N400 negatives for PCs.It is worth mentioning that dyslexic children did not show any difference on N400,which reflected the insufficient orthographic processing of dyslexic children in China.Conclusion:These results show that Chinese dyslexic children had orthographic processing defects.
文摘In recent years,researchers in handwriting recognition analysis relating to indigenous languages have gained significant internet among research communities.The recent developments of artificial intelligence(AI),natural language processing(NLP),and computational linguistics(CL)find useful in the analysis of regional low resource languages.Automatic lexical task participation might be elaborated to various applications in the NLP.It is apparent from the availability of effective machine recognition models and open access handwritten databases.Arabic language is a commonly spoken Semitic language,and it is written with the cursive Arabic alphabet from right to left.Arabic handwritten Character Recognition(HCR)is a crucial process in optical character recognition.In this view,this paper presents effective Computational linguistics with Deep Learning based Handwriting Recognition and Speech Synthesizer(CLDL-THRSS)for Indigenous Language.The presented CLDL-THRSS model involves two stages of operations namely automated handwriting recognition and speech recognition.Firstly,the automated handwriting recognition procedure involves preprocessing,segmentation,feature extraction,and classification.Also,the Capsule Network(CapsNet)based feature extractor is employed for the recognition of handwritten Arabic characters.For optimal hyperparameter tuning,the cuckoo search(CS)optimization technique was included to tune the parameters of the CapsNet method.Besides,deep neural network with hidden Markov model(DNN-HMM)model is employed for the automatic speech synthesizer.To validate the effective performance of the proposed CLDL-THRSS model,a detailed experimental validation process takes place and investigates the outcomes interms of different measures.The experimental outcomes denoted that the CLDL-THRSS technique has demonstrated the compared methods.
文摘Handwritten signature and character recognition has become challenging research topic due to its numerous applications. In this paper, we proposed a system that has three sub-systems. The three subsystems focus on offline recognition of handwritten English alphabetic characters (uppercase and lowercase), numeric characters (0 - 9) and individual signatures respectively. The system includes several stages like image preprocessing, the post-processing, the segmentation, the detection of the required amount of the character and signature, feature extraction and finally Neural Network recognition. At first, the scanned image is filtered after conversion of the scanned image into a gray image. Then image cropping method is applied to detect the signature. Then an accurate recognition is ensured by post-processing the cropped images. MATLAB has been used to design the system. The subsystems are then tested for several samples and the results are found satisfactory at about 97% success rate. The quality of the image plays a vital role as the images of poor or mediocre quality may lead to unsuccessful recognition and verification.