AIM: To determine if topical instillation of dihydroartemisinin (DHA) inhibits corneal neovascularization (NV) in rats and to investigate the role of the extracellular regulated kinases (ERK) 1/2 and p38 pathways in t...AIM: To determine if topical instillation of dihydroartemisinin (DHA) inhibits corneal neovascularization (NV) in rats and to investigate the role of the extracellular regulated kinases (ERK) 1/2 and p38 pathways in this process. O METHODS: Suture-induced corneal NV was produced in rats and the eyes were topically treated with different concentrations of DHA (20mg/L, 10mg/L or 5mg/L) or normal saline 4 times a day for 7 days. The corneal NV was quantified as the proportion of NV area to the whole cornea. Western blot was used to determine the expressions of vascular endothelial growth factor (VEGF) and the phosphorylation status of VEGF receptor-2, ERK1/2 and p38 in the corneas. Immunofluorescent staining was used to determine the expressions of phospho-ERK1/2 and phospho-p38 in the corneal tissues from the eyes treated with 20 mg/L DHA (DHA group) or normal saline (control group). RESULTS: The proportion of corneal NV area in the eyes treated with normal saline or DHA at dosages of 20mg/L, 10mg/L or 5mg/L was (23.74 +/- 3.00)%, (15.73 +/- 2.88)%, (19.53 +/- 2.42)%, and (23.38 +/- 2.79)%, respectively. In the eyes treated with 20mg/L or 10mg/L DHA, the corneal NV area was significantly reduced when compared to that in eyes with normal saline (P < 0.05). Western blot analyses revealed that 20mg/L DHA significantly inhibited the expressions of VEGF and phospho-VEGFR-2. Both 20mg/L and 10mg/L DHA inhibited the expressions of phospho-ERK1/2 and phospho-p38. Immunofluorescent staining further demonstrated that 20mg/L DHA lowered the Expression levels of phospho-ERK1/2 and phospho-p38 in the corneas with suture-induced NV. O CONCLUSION: Suture-induced NV in rat corneas was significantly inhibited by topical treatment with 20mg/L and 10mg/L DHA. The results suggest that the effects could be partially dependent on the DHA-mediated inhibitions of the ERK1/2 and p38 pathways.展开更多
This study investigated the effect and mechanism of cell cycle reentry induced by 6-hydrodopamine (6-OHDA) in PC12 cells. By using neural differentiated PC12 cells treated with 6-OHDA, the apoptosis model of dopamin...This study investigated the effect and mechanism of cell cycle reentry induced by 6-hydrodopamine (6-OHDA) in PC12 cells. By using neural differentiated PC12 cells treated with 6-OHDA, the apoptosis model of dopaminergic neurons was established. Cell viability was measured by MTT. Cell apoptosis and the distribution of cell cycle were assessed by flow cytometry. Western blot was used to detect the activation of extracellular regulator kinasel/2 (ERK1/2) pathway and the phosphorylation of retinoblastoma protein (RB). Our results showed that after PC12 cells were treated wtih 6-OHDA, the viability of PC12 cells was declined in a concentration-dependent manner. Flow cytornetry revealed that 6-OHDA could increase the apoptosis ratio of PC12 cells in a time-dependent manner. The percentage of ceils in G0/G1 phase of cell cycle was decreased and that in S phase and G2/M phase increased. Simultaneously, ERK1/2 pathway was activated and phosphorylated RB increased. It was concluded that 6-OHDA could induce cell cycle reentry of dopaminergic neurons through the activation of ERK1/2 pathway and RB phosphorylation. The aberrant cell cycle reentry contributes to the apoptosis of dopaminergic neurons.展开更多
Overexpression of receptor-interacting protein 140(RIP140) promotes neuronal differentiation of N2 a cells via extracellular regulated kinase 1/2(ERK1/2) signaling.However,involvement of RIP140 in human neural dif...Overexpression of receptor-interacting protein 140(RIP140) promotes neuronal differentiation of N2 a cells via extracellular regulated kinase 1/2(ERK1/2) signaling.However,involvement of RIP140 in human neural differentiation remains unclear.We found both RIP140 and ERK1/2 expression increased during neural differentiation of H1 human embryonic stem cells.Moreover,RIP140 negatively correlated with stem cell markers Oct4 and Sox2 during early stages of neural differentiation,and positively correlated with the neural stem cell marker Nestin during later stages.Thus,ERK1/2 signaling may provide the molecular mechanism by which RIP140 takes part in neural differentiation to eventually affect the number of neurons produced.展开更多
基金Science and Technology Planning Projects of Guangdong Province,China (No.2008B080703037,No. 2008B080703042)
文摘AIM: To determine if topical instillation of dihydroartemisinin (DHA) inhibits corneal neovascularization (NV) in rats and to investigate the role of the extracellular regulated kinases (ERK) 1/2 and p38 pathways in this process. O METHODS: Suture-induced corneal NV was produced in rats and the eyes were topically treated with different concentrations of DHA (20mg/L, 10mg/L or 5mg/L) or normal saline 4 times a day for 7 days. The corneal NV was quantified as the proportion of NV area to the whole cornea. Western blot was used to determine the expressions of vascular endothelial growth factor (VEGF) and the phosphorylation status of VEGF receptor-2, ERK1/2 and p38 in the corneas. Immunofluorescent staining was used to determine the expressions of phospho-ERK1/2 and phospho-p38 in the corneal tissues from the eyes treated with 20 mg/L DHA (DHA group) or normal saline (control group). RESULTS: The proportion of corneal NV area in the eyes treated with normal saline or DHA at dosages of 20mg/L, 10mg/L or 5mg/L was (23.74 +/- 3.00)%, (15.73 +/- 2.88)%, (19.53 +/- 2.42)%, and (23.38 +/- 2.79)%, respectively. In the eyes treated with 20mg/L or 10mg/L DHA, the corneal NV area was significantly reduced when compared to that in eyes with normal saline (P < 0.05). Western blot analyses revealed that 20mg/L DHA significantly inhibited the expressions of VEGF and phospho-VEGFR-2. Both 20mg/L and 10mg/L DHA inhibited the expressions of phospho-ERK1/2 and phospho-p38. Immunofluorescent staining further demonstrated that 20mg/L DHA lowered the Expression levels of phospho-ERK1/2 and phospho-p38 in the corneas with suture-induced NV. O CONCLUSION: Suture-induced NV in rat corneas was significantly inhibited by topical treatment with 20mg/L and 10mg/L DHA. The results suggest that the effects could be partially dependent on the DHA-mediated inhibitions of the ERK1/2 and p38 pathways.
基金supported by a grant from National Natu-ral Sciences Foundation of China (No. 30570627).
文摘This study investigated the effect and mechanism of cell cycle reentry induced by 6-hydrodopamine (6-OHDA) in PC12 cells. By using neural differentiated PC12 cells treated with 6-OHDA, the apoptosis model of dopaminergic neurons was established. Cell viability was measured by MTT. Cell apoptosis and the distribution of cell cycle were assessed by flow cytometry. Western blot was used to detect the activation of extracellular regulator kinasel/2 (ERK1/2) pathway and the phosphorylation of retinoblastoma protein (RB). Our results showed that after PC12 cells were treated wtih 6-OHDA, the viability of PC12 cells was declined in a concentration-dependent manner. Flow cytornetry revealed that 6-OHDA could increase the apoptosis ratio of PC12 cells in a time-dependent manner. The percentage of ceils in G0/G1 phase of cell cycle was decreased and that in S phase and G2/M phase increased. Simultaneously, ERK1/2 pathway was activated and phosphorylated RB increased. It was concluded that 6-OHDA could induce cell cycle reentry of dopaminergic neurons through the activation of ERK1/2 pathway and RB phosphorylation. The aberrant cell cycle reentry contributes to the apoptosis of dopaminergic neurons.
基金supported by the National Natural Science Foundation of China,No.31340024
文摘Overexpression of receptor-interacting protein 140(RIP140) promotes neuronal differentiation of N2 a cells via extracellular regulated kinase 1/2(ERK1/2) signaling.However,involvement of RIP140 in human neural differentiation remains unclear.We found both RIP140 and ERK1/2 expression increased during neural differentiation of H1 human embryonic stem cells.Moreover,RIP140 negatively correlated with stem cell markers Oct4 and Sox2 during early stages of neural differentiation,and positively correlated with the neural stem cell marker Nestin during later stages.Thus,ERK1/2 signaling may provide the molecular mechanism by which RIP140 takes part in neural differentiation to eventually affect the number of neurons produced.