In order to better understand the leaching process of rare earth (RE) and aluminum (Al) from the weathered crust elutiondepositedRE ore, the mass transfer of RE and Al in column leaching was investigated using the...In order to better understand the leaching process of rare earth (RE) and aluminum (Al) from the weathered crust elutiondepositedRE ore, the mass transfer of RE and Al in column leaching was investigated using the chromatographic plate theory. Theresults show that a higher initial ammonium concentration in a certain range can enhance the mass transfer process. pH of leachingagent in the range of 2 to 8 almost has no effect on the mass transfer efficiency of RE, but plays a positive role in the mass transferefficiency of Al under strong acidic condition (pH〈4). There is an optimum flow rate that makes the highest mass transfer efficiency.The optimum leaching condition of RE is the leaching agent pH of 4?8, ammonium concentration of 0.4 mol/L and flow rate of0.5 mL/min. The mass transfer efficiencies of RE and Al both follow the order: (NH4)2SO4〈NH4Cl〈NH4NO3, implying thecomplexing ability of anion.展开更多
On the basis of the description of the rare-earth countercurrent extraction process, the on-line detecting method and equipments of rare-earth elements and the application in the process of the rare-earth countercurre...On the basis of the description of the rare-earth countercurrent extraction process, the on-line detecting method and equipments of rare-earth elements and the application in the process of the rare-earth countercurrent extraction are summarized. The procedure simulation of the computer, the automation control method and its current application are also mentioned in the process of rare-earth countercurrent extraction. The method of soft sensor is proposed. Optimal control method based on object-oriented rare-earth countercurrent extraction process and integrated automation system composed of process management system and process control system are presented, which are the developing direction of the automation of rare-earth countercurrent extraction process.展开更多
Column leaching experiments with ion adsorption-type rare earth ores for different lixiviant concentrations and different column heights were carried out.A mathematical model of column leaching was constructed based o...Column leaching experiments with ion adsorption-type rare earth ores for different lixiviant concentrations and different column heights were carried out.A mathematical model of column leaching was constructed based on the experimental data.Two parameters(a and b)in the model were determined according to the following methodology:the ore column was divided into several units;each unit was treated with multiple leaching steps.The leaching process was simulated as a series of batch leaching experiments.Parameter a of the model was determined based on the selectivity coefficient of the balanced batch leaching experiment.Further,the influences of ammonium sulfate concentration,rare earth grade,column height,permeability coefficient,and hydrodynamic dispersion coefficient on the extraction were analyzed.Relationships between parameter b,the ammonium sulfate concentration,and the physical and mechanical properties of the ore column,were examined using dimensional analysis.It was determined that the optimal ammonium sulfate concentration for different column heights(2.5,5.0,7.5,and 10.0 cm)using the mathematical model were 5.9,6.2,7.3,and 7.7 g/L,respectively.The mathematical model can be used to estimate the breakthrough curve,leaching rate,and leaching period of rare earth ores,to achieve optimal extraction.展开更多
P507 (HEH [EHP]) is an important extractant for the separation of rare earth and is widely used in industry. Since the complexes of heavy rare earth ions with saponified P507 are so stable that the rare earth ions a...P507 (HEH [EHP]) is an important extractant for the separation of rare earth and is widely used in industry. Since the complexes of heavy rare earth ions with saponified P507 are so stable that the rare earth ions are difficult to be exchanged and stripped by H^+ ions. Thus, the cycled extractant loads certain amount of heavy rare earth ion after stripped by acid. This amount of rare earth ions loaded in blank organic phase is named as the "cycling loaded rare earth ions (CLREs)". In the separation process of Tm^3+, Yb^3 +, and Lu^3 + , the amount of CLREs carl be more than 10% of the normal capacity of saponifiedorganic phase. In fact, CLREs affect the separation efficiency and decrease the purity of the products. Based on the extracting-stripping equilibrium and mass balance, the influence of different process parameters on the amount of CLREs was studied by computer simulation. The results indicate that higher acid consumption and more stripping stages are required to eliminate CLREs. For an industrial practice, however, the acid consumption and the number of stripping stage can be designed by choosing an economic process and controlling CLREs at a reasonable level.展开更多
Separation of target elements or minerals from their host rock or ore is essential to successful mining operation. The inevitable loss of a portion of the desired material that accompanies each step in the extraction ...Separation of target elements or minerals from their host rock or ore is essential to successful mining operation. The inevitable loss of a portion of the desired material that accompanies each step in the extraction process must be documented to develop the operational protocol. Superposition of the characteristic X-ray fluorescence spectra of head (crushed rock ore particles, pre-processing) and tail (post-processing particles) samples provides a direct visual comparison of relative peak sizes, and thereby the relative concentrations, of elements of interest. If the head and tail peaks are identical, none of the element was recovered in the extraction process. At the other extreme if the tail peak “flat lines”, i.e., there is no peak, there was 100% recovery of that element. Standardless visual comparison is valid if the same mass of identical starting material is incorporated into the head and tail sample analysis pucks, and XRF analytical conditions are identical. The considerable time and expense of acquiring and calibrating the standards associated with XRF analysis of 75 or more elements are avoided, a significant advantage during initial broad screening of an experimental extraction procedure. Full quantitation by XRF or an alternate technique can proceed at a later project stage, if desired. The approach retains and presents all features of the original data, thus eliminating questions about data quality, standards and their calibration, and data manipulation in processing from raw counts to concentrations in printout tables. This form of display is ideal for both the mining professional and such less technical groups as corporate staff, investors, regulators, and the public. Examples presented herein are for heap leaching;the protocol can be applied as well to any of the other traditional ore processing and beneficiation procedures, e.g., gravity concentration, magnetic and electrical separation, froth flotation, and ore sorting.展开更多
Weathered crust elution-deposited rare earth ore is crucial source of medium and heavy rare earths,with in-situ leaching being the most common mining method.The high contents of impurity of aluminum in the leach solut...Weathered crust elution-deposited rare earth ore is crucial source of medium and heavy rare earths,with in-situ leaching being the most common mining method.The high contents of impurity of aluminum in the leach solution are a significant challenge for the subsequent enrichment process of rare earths.A comprehensive understanding of the occurrences and vertical distribution of aluminum and rare earths within typical vertical profiles can provide valuable insights into entire design of the in-situ leaching.This paper improves a five-step sequential extraction method to analyze the occurrence and vertical distribution of rare earths and aluminum in vertical profiles from Chongzuo and Longyan.Experimental results demonstrate that soil solution pH is the main factor affecting the vertical distribution of ionexchangeable rare earths.Both samples have distinct areas of enrichment for ion-exchangeable rare earths or aluminum.Ion-exchangeable rare earths are primary concentrated in the middle and lower parts of the ore layer(4-13 m in Chongzuo,14-22 m in Longyan),while the ion-exchangeable aluminum is mainly enriched in the upper part of the ore layer(1-5 m in Chongzuo,and 2-14 m in Longyan).The vertical distribution of inorganic hydroxy aluminum is likely influenced by the micromorphology and particle size of the clay minerals.The inorganic hydroxy aluminum concentration in Chongzuo samples decreases continuously from 415.65 to 120.95 mg/kg with increasing sampling depth,whereas the concentration in Longyan samples(110.55-171.27 mg/kg)is almost independence with sampling depth.These results provide direct guidance for the entire design of the injection well depth and the leaching parameters,thereby inhibiting the leaching of impurity of aluminum and lower the consumption of leaching agent.展开更多
In order to intensify the leaching process of rare earth(RE) and reduce the impurities in the leachate, ammonium chloride(NH4Cl) and ammonium nitrate(NH4NO3) were mixed as a compound leaching agent to treat the ...In order to intensify the leaching process of rare earth(RE) and reduce the impurities in the leachate, ammonium chloride(NH4Cl) and ammonium nitrate(NH4NO3) were mixed as a compound leaching agent to treat the weathered crust elution-deposited RE ore. Effects of molar ratio of NH~+_4Cl and NH_4NO_3, ammonium(NH_4) concentration, leaching agent pH and flow rate on the leaching process of RE were studied and evaluated by the chromatographic plate theory. Leaching process of the main impurity aluminium(Al) was also discussed in detail. Results showed that a higher initial ammonium concentration in a certain range could enhance the mass transfer process of RE and Al by providing a driving force to overcome the resistance of diffusion. pH almost had no effects on the mass transfer efficiency of RE and Al in the range of 4 to 8. The relationship between the flow rate and height equivalent to a theoretical plate(HETP) could fit well with the Van Deemter equation, and the flow rate at the lowest HETP was determined. The optimum conditions of column leaching for RE and Al were 1:1(molar ratio) of NH_4Cl and NH_4NO_3, 0.2 mol/L of ammonium concentration, pH 4–8 of leaching agent and 0.5 mL /min of flow rate. Under this condition, the mass transfer efficiency of RE was improved, but no change was observed for Al compared with the most widely used ammonium sulfate. Moreover, the significant difference value(around 20 mL) of retention volume at the peak concentration between RE and Al provided a possibility for their separation. It suggested the potential application of the novel compound leaching agent(NH_4Cl/NH_4NO_3). It was found that the relative concentration of RE in the leachate could be easily obtained by monitoring the pH of leachate.展开更多
In order to increase efficiency and avoid NH^(4+)-N pollution in the leaching process of weathered crust elution-deposited rare earth ores,the mass transfer in heap leaching with Al_(2)(SO_(4))_(3) solution was simula...In order to increase efficiency and avoid NH^(4+)-N pollution in the leaching process of weathered crust elution-deposited rare earth ores,the mass transfer in heap leaching with Al_(2)(SO_(4))_(3) solution was simulated with column elution and experimentally optimized.The results indicate that the leaching yield is also up to 99%for leaching with aluminum sulfate instead of ammonium sulfate.The optimal flow rate is 60 mL/h,the height equivalent to a theoretical plate(HETP)is 1.29 mm correspondingly.The peak value position of RE^(3+)is 60 mL/h,Fe^(3+)is 100 mL/h,however,Al^(3+)is 150 mL/h,and the heap leaching process has kinetic separation effect.展开更多
To examine the activation of organic acids on the leaching process of ion-adsorption type rare earth ore(IRE-ore), the leaching behavior of rare earth(RE) and zeta potential of IRE-ore were investigated in the abs...To examine the activation of organic acids on the leaching process of ion-adsorption type rare earth ore(IRE-ore), the leaching behavior of rare earth(RE) and zeta potential of IRE-ore were investigated in the absence and presence of carboxylic acids. The results show that all the tested organic acids(acetic acid,malonic acid, citric acid, tartaric acid, succinic acid, and malic acid) can promote RE extraction. At relatively high concentrations of organic acids, the activation efficiency of organic acids on RE extraction is generally consistent with their complexation ability; whereas at their low concentrations, the change of zeta potential on the IRE-ore surface with organic acid concentration and p H has a close association with RE extraction, which indicates that organic acids can impact the surface electrical property of IREore via their adsorption/desorption, and thereby increase/decrease the affinity of RE ions to IRE-ore.Therefore the influence of organic acids on the IRE-ore surface electrical property also plays an important role in RE extraction in addition to their complexation with RE ions.展开更多
A leaching experiment on simulated rare earth ore pillars with uneven grade distribution was conducted because of the readsorption of rare earth elements in the in situ leaching process of ion-adsorption-type rare ear...A leaching experiment on simulated rare earth ore pillars with uneven grade distribution was conducted because of the readsorption of rare earth elements in the in situ leaching process of ion-adsorption-type rare earth ore.Results show that the readsorption of rare earth elements in the barren layer is the main reason for the decrease in rare earth concentration in the leachate,decrease in rare earth recovery and extension of the leaching process.This limitation could be affected by the concentration of rare earth of the influent flow passing through the barren ore layer,and pH value of leaching agents shows minimal effect during leaching.The magnesium sulfate leaching process requires higher liquid-tosolid ratio than the ammonium sulfate leaching process.The former also has lower peak value of rare earth concentration and more significant tailing in the leaching curve.The readsorption of rare earth elements in the barren layer is more severe in magnesium sulfate leaching than in ammonium sulfate leaching.Thus,areas without ore belts should be avoided when magnesium sulfate is used for leaching.展开更多
Polymeric nanoparticles of poly(methyl methacrylate)were obtained by emulsion polymerization techniques in a proce ss of two stages.The particles were functionalized with acrylic acid,curcumin,and fumaramide and three...Polymeric nanoparticles of poly(methyl methacrylate)were obtained by emulsion polymerization techniques in a proce ss of two stages.The particles were functionalized with acrylic acid,curcumin,and fumaramide and three series of polymeric particles were obtained.The incorporation of functional groups was confirmed by Fourier transform-infrared spectrosocopy(FT-IR)and ultraviolet-visible(UV-Vis)methods.The spherical morphology of particles with an average diameter of 100 nm was observed by scartning electron microscopy(SEM).The polymeric materials were used for recovery of[Eu]from synthetic solutions.The nanoparticles show excellent chelation capacity to trap rare-earth ions,because they recover more than 85%of[Eu]at pH of 2.The images of SEM after extraction process show arrays between particles with larger average particle sizes to 1.5 um.In addition,the particles have a good stripping capacity,exceeding 50%of it,maintaining their homogeneity in morphology and good stability in dispersion for the recovery and stripping processes.A pseudo-second model order is obtained for the extraction and stripping processes while the best results of stripping process are obtained at pH of 6.展开更多
In this article, the recent progress made by Peking University is briefly introduced. Based on Theory of Countercurrent Extraction established by Prof. Guangxian Xu, the static equilibrium and dynamic process for two-...In this article, the recent progress made by Peking University is briefly introduced. Based on Theory of Countercurrent Extraction established by Prof. Guangxian Xu, the static equilibrium and dynamic process for two- and three-outlet countercurrent extractions, and designed the optimized parameters for the real cascades to separate different rare earth minerals, which can be scaled-up to the industrial process without any further experimental verification were systematically investigated. In order to stabilize the quality of products and improve the capability of automation for extraction process, we have also established an (()^(241)Am) stimulated X-ray fluorescent energy dispersive method to detect the elemental composition in both organic and aqueous phases, which can be used as an on-line analysis method in practice. Furthermore, the expert system and the control software with open- and close-loop models have been set up. Combined with the detected data from on-line analysis, the flow-rates of extracting, feeding, scrubbing and stripping solutions can be (controlled) in an optimum status for the industrial cascades. In addition, we have developed a new multi-input and multi-output countercurrent extraction process for separating multi-component rare earth mixture with lower chemical cost and pollution.展开更多
This paper reviews the development course of separating rare earths with acid phosphorus extractants,including extraction chemistry(thermodynamics and kinetics), separation process and industrial application, the loss...This paper reviews the development course of separating rare earths with acid phosphorus extractants,including extraction chemistry(thermodynamics and kinetics), separation process and industrial application, the loss/degradation of extractants, etc.展开更多
The recovery of rare earths (RE) during the wet processing of phosphoric acid is very important, the method of emul- sion liquid membrane (ELM) with di(2-ethylhexly) phosphate (D2EHPA) as carrier has the high ...The recovery of rare earths (RE) during the wet processing of phosphoric acid is very important, the method of emul- sion liquid membrane (ELM) with di(2-ethylhexly) phosphate (D2EHPA) as carrier has the high selectivity while cannot provide a satisfactory extraction rate. Here novel method of emulsion liquid membrane (ELM) using Aniline as carrier to extract RE from the feed solution was proposed. The method could increase the extraction rate of RE in the real sample to 93%. The effects of dif- ferent parameters such as type and concentration of carrier and surfactant, hydrochloric acid concentration, organic to internal phase volume ratio, membrane to external phase volume ratio on extraction of RE3+ were investigated. Quantitative extraction (〉93%) of RE3+ was observed with 6 vol.% Aniline and 4 vol.% T 154 liquid membrane at external to internal phase volume ratio of 10 for the feed solution. The proposed method of ELM using Aniline as carrier can be expected to provide a practical, efficient, and economical method for extracting RE from phosphate leach solution with high acidity in the industry of wet process phosphoric acid.展开更多
基金Projects(51274152,41472071)supported by the National Natural Science Foundation of ChinaProject(T201506)supported by the Program for Excellent Young Scientific and Technological Innovation Team of Hubei Provincial Department of Education,China
文摘In order to better understand the leaching process of rare earth (RE) and aluminum (Al) from the weathered crust elutiondepositedRE ore, the mass transfer of RE and Al in column leaching was investigated using the chromatographic plate theory. Theresults show that a higher initial ammonium concentration in a certain range can enhance the mass transfer process. pH of leachingagent in the range of 2 to 8 almost has no effect on the mass transfer efficiency of RE, but plays a positive role in the mass transferefficiency of Al under strong acidic condition (pH〈4). There is an optimum flow rate that makes the highest mass transfer efficiency.The optimum leaching condition of RE is the leaching agent pH of 4?8, ammonium concentration of 0.4 mol/L and flow rate of0.5 mL/min. The mass transfer efficiencies of RE and Al both follow the order: (NH4)2SO4〈NH4Cl〈NH4NO3, implying thecomplexing ability of anion.
文摘On the basis of the description of the rare-earth countercurrent extraction process, the on-line detecting method and equipments of rare-earth elements and the application in the process of the rare-earth countercurrent extraction are summarized. The procedure simulation of the computer, the automation control method and its current application are also mentioned in the process of rare-earth countercurrent extraction. The method of soft sensor is proposed. Optimal control method based on object-oriented rare-earth countercurrent extraction process and integrated automation system composed of process management system and process control system are presented, which are the developing direction of the automation of rare-earth countercurrent extraction process.
基金the National Natural Science Foundation of China(Nos.51664015,41602311,and 51774156)the Jiangxi University of Science and Technology Qingjiang Youth Elite Support Program(No.JXUSTQJBJ2016007).
文摘Column leaching experiments with ion adsorption-type rare earth ores for different lixiviant concentrations and different column heights were carried out.A mathematical model of column leaching was constructed based on the experimental data.Two parameters(a and b)in the model were determined according to the following methodology:the ore column was divided into several units;each unit was treated with multiple leaching steps.The leaching process was simulated as a series of batch leaching experiments.Parameter a of the model was determined based on the selectivity coefficient of the balanced batch leaching experiment.Further,the influences of ammonium sulfate concentration,rare earth grade,column height,permeability coefficient,and hydrodynamic dispersion coefficient on the extraction were analyzed.Relationships between parameter b,the ammonium sulfate concentration,and the physical and mechanical properties of the ore column,were examined using dimensional analysis.It was determined that the optimal ammonium sulfate concentration for different column heights(2.5,5.0,7.5,and 10.0 cm)using the mathematical model were 5.9,6.2,7.3,and 7.7 g/L,respectively.The mathematical model can be used to estimate the breakthrough curve,leaching rate,and leaching period of rare earth ores,to achieve optimal extraction.
文摘P507 (HEH [EHP]) is an important extractant for the separation of rare earth and is widely used in industry. Since the complexes of heavy rare earth ions with saponified P507 are so stable that the rare earth ions are difficult to be exchanged and stripped by H^+ ions. Thus, the cycled extractant loads certain amount of heavy rare earth ion after stripped by acid. This amount of rare earth ions loaded in blank organic phase is named as the "cycling loaded rare earth ions (CLREs)". In the separation process of Tm^3+, Yb^3 +, and Lu^3 + , the amount of CLREs carl be more than 10% of the normal capacity of saponifiedorganic phase. In fact, CLREs affect the separation efficiency and decrease the purity of the products. Based on the extracting-stripping equilibrium and mass balance, the influence of different process parameters on the amount of CLREs was studied by computer simulation. The results indicate that higher acid consumption and more stripping stages are required to eliminate CLREs. For an industrial practice, however, the acid consumption and the number of stripping stage can be designed by choosing an economic process and controlling CLREs at a reasonable level.
文摘Separation of target elements or minerals from their host rock or ore is essential to successful mining operation. The inevitable loss of a portion of the desired material that accompanies each step in the extraction process must be documented to develop the operational protocol. Superposition of the characteristic X-ray fluorescence spectra of head (crushed rock ore particles, pre-processing) and tail (post-processing particles) samples provides a direct visual comparison of relative peak sizes, and thereby the relative concentrations, of elements of interest. If the head and tail peaks are identical, none of the element was recovered in the extraction process. At the other extreme if the tail peak “flat lines”, i.e., there is no peak, there was 100% recovery of that element. Standardless visual comparison is valid if the same mass of identical starting material is incorporated into the head and tail sample analysis pucks, and XRF analytical conditions are identical. The considerable time and expense of acquiring and calibrating the standards associated with XRF analysis of 75 or more elements are avoided, a significant advantage during initial broad screening of an experimental extraction procedure. Full quantitation by XRF or an alternate technique can proceed at a later project stage, if desired. The approach retains and presents all features of the original data, thus eliminating questions about data quality, standards and their calibration, and data manipulation in processing from raw counts to concentrations in printout tables. This form of display is ideal for both the mining professional and such less technical groups as corporate staff, investors, regulators, and the public. Examples presented herein are for heap leaching;the protocol can be applied as well to any of the other traditional ore processing and beneficiation procedures, e.g., gravity concentration, magnetic and electrical separation, froth flotation, and ore sorting.
基金Project supported by the National Key Research and Development Program of China(2020YFC1909002)the Major Research Plan of the National Natural Science Foundation of China(91962211)the Science and Technology Innovation Fund of GRINM(2022PD0102)。
文摘Weathered crust elution-deposited rare earth ore is crucial source of medium and heavy rare earths,with in-situ leaching being the most common mining method.The high contents of impurity of aluminum in the leach solution are a significant challenge for the subsequent enrichment process of rare earths.A comprehensive understanding of the occurrences and vertical distribution of aluminum and rare earths within typical vertical profiles can provide valuable insights into entire design of the in-situ leaching.This paper improves a five-step sequential extraction method to analyze the occurrence and vertical distribution of rare earths and aluminum in vertical profiles from Chongzuo and Longyan.Experimental results demonstrate that soil solution pH is the main factor affecting the vertical distribution of ionexchangeable rare earths.Both samples have distinct areas of enrichment for ion-exchangeable rare earths or aluminum.Ion-exchangeable rare earths are primary concentrated in the middle and lower parts of the ore layer(4-13 m in Chongzuo,14-22 m in Longyan),while the ion-exchangeable aluminum is mainly enriched in the upper part of the ore layer(1-5 m in Chongzuo,and 2-14 m in Longyan).The vertical distribution of inorganic hydroxy aluminum is likely influenced by the micromorphology and particle size of the clay minerals.The inorganic hydroxy aluminum concentration in Chongzuo samples decreases continuously from 415.65 to 120.95 mg/kg with increasing sampling depth,whereas the concentration in Longyan samples(110.55-171.27 mg/kg)is almost independence with sampling depth.These results provide direct guidance for the entire design of the injection well depth and the leaching parameters,thereby inhibiting the leaching of impurity of aluminum and lower the consumption of leaching agent.
基金Project supported by the National Natural Science Foundation of China(51274152 and 41472071)the Program for Excellent Young Scientific and Technological Innovation Team of Hubei Provincial Department of Education,China(T201506)
文摘In order to intensify the leaching process of rare earth(RE) and reduce the impurities in the leachate, ammonium chloride(NH4Cl) and ammonium nitrate(NH4NO3) were mixed as a compound leaching agent to treat the weathered crust elution-deposited RE ore. Effects of molar ratio of NH~+_4Cl and NH_4NO_3, ammonium(NH_4) concentration, leaching agent pH and flow rate on the leaching process of RE were studied and evaluated by the chromatographic plate theory. Leaching process of the main impurity aluminium(Al) was also discussed in detail. Results showed that a higher initial ammonium concentration in a certain range could enhance the mass transfer process of RE and Al by providing a driving force to overcome the resistance of diffusion. pH almost had no effects on the mass transfer efficiency of RE and Al in the range of 4 to 8. The relationship between the flow rate and height equivalent to a theoretical plate(HETP) could fit well with the Van Deemter equation, and the flow rate at the lowest HETP was determined. The optimum conditions of column leaching for RE and Al were 1:1(molar ratio) of NH_4Cl and NH_4NO_3, 0.2 mol/L of ammonium concentration, pH 4–8 of leaching agent and 0.5 mL /min of flow rate. Under this condition, the mass transfer efficiency of RE was improved, but no change was observed for Al compared with the most widely used ammonium sulfate. Moreover, the significant difference value(around 20 mL) of retention volume at the peak concentration between RE and Al provided a possibility for their separation. It suggested the potential application of the novel compound leaching agent(NH_4Cl/NH_4NO_3). It was found that the relative concentration of RE in the leachate could be easily obtained by monitoring the pH of leachate.
基金Project supported by the National Natural Science Foundation of China(51964021,51774156)China’s NationalKey R&D Plan Project(2019YFC060025000)。
文摘In order to increase efficiency and avoid NH^(4+)-N pollution in the leaching process of weathered crust elution-deposited rare earth ores,the mass transfer in heap leaching with Al_(2)(SO_(4))_(3) solution was simulated with column elution and experimentally optimized.The results indicate that the leaching yield is also up to 99%for leaching with aluminum sulfate instead of ammonium sulfate.The optimal flow rate is 60 mL/h,the height equivalent to a theoretical plate(HETP)is 1.29 mm correspondingly.The peak value position of RE^(3+)is 60 mL/h,Fe^(3+)is 100 mL/h,however,Al^(3+)is 150 mL/h,and the heap leaching process has kinetic separation effect.
基金Project supported by National Natural Science Foundation of China(51604128)
文摘To examine the activation of organic acids on the leaching process of ion-adsorption type rare earth ore(IRE-ore), the leaching behavior of rare earth(RE) and zeta potential of IRE-ore were investigated in the absence and presence of carboxylic acids. The results show that all the tested organic acids(acetic acid,malonic acid, citric acid, tartaric acid, succinic acid, and malic acid) can promote RE extraction. At relatively high concentrations of organic acids, the activation efficiency of organic acids on RE extraction is generally consistent with their complexation ability; whereas at their low concentrations, the change of zeta potential on the IRE-ore surface with organic acid concentration and p H has a close association with RE extraction, which indicates that organic acids can impact the surface electrical property of IREore via their adsorption/desorption, and thereby increase/decrease the affinity of RE ions to IRE-ore.Therefore the influence of organic acids on the IRE-ore surface electrical property also plays an important role in RE extraction in addition to their complexation with RE ions.
基金financially supported by the National Natural Science Foundation of China (No.5177041221)。
文摘A leaching experiment on simulated rare earth ore pillars with uneven grade distribution was conducted because of the readsorption of rare earth elements in the in situ leaching process of ion-adsorption-type rare earth ore.Results show that the readsorption of rare earth elements in the barren layer is the main reason for the decrease in rare earth concentration in the leachate,decrease in rare earth recovery and extension of the leaching process.This limitation could be affected by the concentration of rare earth of the influent flow passing through the barren ore layer,and pH value of leaching agents shows minimal effect during leaching.The magnesium sulfate leaching process requires higher liquid-tosolid ratio than the ammonium sulfate leaching process.The former also has lower peak value of rare earth concentration and more significant tailing in the leaching curve.The readsorption of rare earth elements in the barren layer is more severe in magnesium sulfate leaching than in ammonium sulfate leaching.Thus,areas without ore belts should be avoided when magnesium sulfate is used for leaching.
基金Project supported by Secretaria de Investigación y Posgrado Instituto Politecnico Nacional(20221369,20231939,2027024,20230751)Consejo Nacional de Humanidades,Ciencia y Tecnologias CONAHCyT。
文摘Polymeric nanoparticles of poly(methyl methacrylate)were obtained by emulsion polymerization techniques in a proce ss of two stages.The particles were functionalized with acrylic acid,curcumin,and fumaramide and three series of polymeric particles were obtained.The incorporation of functional groups was confirmed by Fourier transform-infrared spectrosocopy(FT-IR)and ultraviolet-visible(UV-Vis)methods.The spherical morphology of particles with an average diameter of 100 nm was observed by scartning electron microscopy(SEM).The polymeric materials were used for recovery of[Eu]from synthetic solutions.The nanoparticles show excellent chelation capacity to trap rare-earth ions,because they recover more than 85%of[Eu]at pH of 2.The images of SEM after extraction process show arrays between particles with larger average particle sizes to 1.5 um.In addition,the particles have a good stripping capacity,exceeding 50%of it,maintaining their homogeneity in morphology and good stability in dispersion for the recovery and stripping processes.A pseudo-second model order is obtained for the extraction and stripping processes while the best results of stripping process are obtained at pH of 6.
文摘In this article, the recent progress made by Peking University is briefly introduced. Based on Theory of Countercurrent Extraction established by Prof. Guangxian Xu, the static equilibrium and dynamic process for two- and three-outlet countercurrent extractions, and designed the optimized parameters for the real cascades to separate different rare earth minerals, which can be scaled-up to the industrial process without any further experimental verification were systematically investigated. In order to stabilize the quality of products and improve the capability of automation for extraction process, we have also established an (()^(241)Am) stimulated X-ray fluorescent energy dispersive method to detect the elemental composition in both organic and aqueous phases, which can be used as an on-line analysis method in practice. Furthermore, the expert system and the control software with open- and close-loop models have been set up. Combined with the detected data from on-line analysis, the flow-rates of extracting, feeding, scrubbing and stripping solutions can be (controlled) in an optimum status for the industrial cascades. In addition, we have developed a new multi-input and multi-output countercurrent extraction process for separating multi-component rare earth mixture with lower chemical cost and pollution.
基金Project supported by the National Basic Research Program of China(973 Program,2006CB403302)
文摘This paper reviews the development course of separating rare earths with acid phosphorus extractants,including extraction chemistry(thermodynamics and kinetics), separation process and industrial application, the loss/degradation of extractants, etc.
基金Project supported by National Natural Science Foundation of China(21461005)
文摘The recovery of rare earths (RE) during the wet processing of phosphoric acid is very important, the method of emul- sion liquid membrane (ELM) with di(2-ethylhexly) phosphate (D2EHPA) as carrier has the high selectivity while cannot provide a satisfactory extraction rate. Here novel method of emulsion liquid membrane (ELM) using Aniline as carrier to extract RE from the feed solution was proposed. The method could increase the extraction rate of RE in the real sample to 93%. The effects of dif- ferent parameters such as type and concentration of carrier and surfactant, hydrochloric acid concentration, organic to internal phase volume ratio, membrane to external phase volume ratio on extraction of RE3+ were investigated. Quantitative extraction (〉93%) of RE3+ was observed with 6 vol.% Aniline and 4 vol.% T 154 liquid membrane at external to internal phase volume ratio of 10 for the feed solution. The proposed method of ELM using Aniline as carrier can be expected to provide a practical, efficient, and economical method for extracting RE from phosphate leach solution with high acidity in the industry of wet process phosphoric acid.