Wind erosion is a major cause of land desertification and sandstorm formation in arid and semi-arid areas.The objective of this study was to evaluate the potential of soybeans crude extract induced calcium carbonate p...Wind erosion is a major cause of land desertification and sandstorm formation in arid and semi-arid areas.The objective of this study was to evaluate the potential of soybeans crude extract induced calcium carbonate precipitation(SICP)on reducing wind erosion risk of sandy soil.Field tests were carried out in Ulan Buh Desert,Ningxia Hui Autonomous Region,China.Results showed that the SICP method could significantly enhance the surface strength and wind erosion resistance of the topsoil.The optimal cementation solution(urea-CaCl2)concentration and spraying volume,according to experiments conducted on sandy land,were 0.2 mol/L and 4 L/m^2,respectively.Under this condition,the CaCO3 content was approximately 0.45%,the surface strength of sandy soil could reach 306.2 kPa,and the depth of wind erosion was approximately zero,after 30 d completion of SICP treatment.Soil surface strength declined with the increase of time,and long-term sand fixation effects of SICP treatment varied depending on topography.Whereas wind erosion in the top area of the windward slope was remarkable,sandy soils on the bottom area of the windward slope still maintained a relatively high level of surface strength and a low degree of wind erosion 12 month after SICP treatment.Scanning electron microscopy(SEM)tests with energy dispersive X-ray(EDX)confirmed the precipitation of CaCO3 and its bridge effect.These findings suggested that the SICP method is a promising candidate to protect sandy soil from wind erosion in desert areas.展开更多
Seabuckthorn seed meal(SSM) is a waste of oil extraction industry that rich in protein. In order to seek suitable protein extraction method, three different deep eutectic solvents(DESs)(including choline chlorideglyce...Seabuckthorn seed meal(SSM) is a waste of oil extraction industry that rich in protein. In order to seek suitable protein extraction method, three different deep eutectic solvents(DESs)(including choline chlorideglycerol, choline chloride-oxalic acid and choline chloride-urea) were developed for extracting protein from SSM and compared with alkaline. Result indicated that alkaline could effectively extract 56.9% protein from SSM and its protein content was 73.1%, higher than DES at 31.0%-41.4% and 64.3%-67.5%, respectively. However, compared to alkali, DES led to a product with less β-sheet, more β-turn, more essential amino acids, higher total amino acid content, especially choline chloride-urea which extracted protein showing an integrated and similar protein weight distribution compared to SSM. Also, this protein extracted chloride-urea showed a highest digestibility in vitro(by pepsin)(54.2%). These results indicated that choline chloride-urea extraction is better than alkaline extraction for SSM.展开更多
Objective:To optimize the technological conditions of ultrasonic-assisted extraction of Amomum longiligulare T.L.Wu polysaccharides and increase the yield of polysaccharides.Methods:The polysaccharide was prepared by ...Objective:To optimize the technological conditions of ultrasonic-assisted extraction of Amomum longiligulare T.L.Wu polysaccharides and increase the yield of polysaccharides.Methods:The polysaccharide was prepared by water extraction and alcohol precipitation method,and the yield of polysaccharide was taken as an index.The effects of ultrasonic time,extraction times,ultrasonic temperature,and water-to-material ratio on polysaccharide yield were investigated through a single factor experiment.Combined experimental design and response surface analysis were used to optimize the extraction process of Amomum longiligulare T.L.Wu polysaccharides.Results:The optimum conditions of ultrasonic-assisted extraction were determined as follows:extraction time of 29 min,three extraction times,water bath extraction temperature of 68℃,water-to-material ratio of 15:1;under these conditions,the polysaccharide yield was 10.69%.Conclusion:The results are close to the predicted values of the model.This optimization test is effective and feasible,and provides a reference for the related research of Amomum longiligulare T.L.Wu.展开更多
With Nb-Ti-stabilized 430 ferritic stainless steel(NTS430FSS) and SUS 430 ferritic stainless steel(SUS430FSS) as experimental materials, the influence of precipitation on intergranular corrosion resistance was inv...With Nb-Ti-stabilized 430 ferritic stainless steel(NTS430FSS) and SUS 430 ferritic stainless steel(SUS430FSS) as experimental materials, the influence of precipitation on intergranular corrosion resistance was investigated. A series of aging treatment were carried out. The free-exposure corrosion test and double loop electrochemical potentiokinetic reactivation(DL-EPR) test with a scan rate of 1.67 m V/s at 26 °C were applied to evaluate the intergranular corrosion(IGC) resistance. Metallographic observation, scanning electron microscope(SEM), transmission electron microscope(TEM) with energy dispersive spectroscopy(EDS) and X-ray diffraction(XRD) analysis were conducted. The results show that IGC occurred in SUS430 FSS aged above 700 °C, while it occurred in NTS430 FSS as the temperature was improved to 1 050 °C. The critical degree of sensitization Ir/Ia reaches 0.305 in SUS430 FSS, which is higher than that of NTS430 FSS, i.e. 0.010, aged at 950 °C for 2 h. The TEM, EDS and XRD results show that a large amount of Cr23C6 precipitates with size of 60 nm×22 nm are located at the SUS430 FSS grain boundaries as chains. With the addition of Nb and Ti and reduction of C, the amount of precipitates reduces significantly in NTS430 FSS. A majority of Cr23C6 were replaced by Ti C and Nb C. Only a small amount of spherical Ti C(R=186 nm) and square Ti N(312 nm×192 nm) with Nb and Cr adsorbed are left along grain boundaries. Due to the dual stabilization of Nb and Ti, the precipitation of Cr23C6 is restrained, the chromium depleted region is avoided and accordingly the resistance to the intergranular corrosion is improved.展开更多
基金Projects(51978244,51979088,51608169)supported by the National Natural Science Foundation of China。
文摘Wind erosion is a major cause of land desertification and sandstorm formation in arid and semi-arid areas.The objective of this study was to evaluate the potential of soybeans crude extract induced calcium carbonate precipitation(SICP)on reducing wind erosion risk of sandy soil.Field tests were carried out in Ulan Buh Desert,Ningxia Hui Autonomous Region,China.Results showed that the SICP method could significantly enhance the surface strength and wind erosion resistance of the topsoil.The optimal cementation solution(urea-CaCl2)concentration and spraying volume,according to experiments conducted on sandy land,were 0.2 mol/L and 4 L/m^2,respectively.Under this condition,the CaCO3 content was approximately 0.45%,the surface strength of sandy soil could reach 306.2 kPa,and the depth of wind erosion was approximately zero,after 30 d completion of SICP treatment.Soil surface strength declined with the increase of time,and long-term sand fixation effects of SICP treatment varied depending on topography.Whereas wind erosion in the top area of the windward slope was remarkable,sandy soils on the bottom area of the windward slope still maintained a relatively high level of surface strength and a low degree of wind erosion 12 month after SICP treatment.Scanning electron microscopy(SEM)tests with energy dispersive X-ray(EDX)confirmed the precipitation of CaCO3 and its bridge effect.These findings suggested that the SICP method is a promising candidate to protect sandy soil from wind erosion in desert areas.
基金the financial support from the National Natural Science Foundation of China (No. 31201416)Science and Technology Research Program of Guangdong Province (No. 2017A01010502)。
文摘Seabuckthorn seed meal(SSM) is a waste of oil extraction industry that rich in protein. In order to seek suitable protein extraction method, three different deep eutectic solvents(DESs)(including choline chlorideglycerol, choline chloride-oxalic acid and choline chloride-urea) were developed for extracting protein from SSM and compared with alkaline. Result indicated that alkaline could effectively extract 56.9% protein from SSM and its protein content was 73.1%, higher than DES at 31.0%-41.4% and 64.3%-67.5%, respectively. However, compared to alkali, DES led to a product with less β-sheet, more β-turn, more essential amino acids, higher total amino acid content, especially choline chloride-urea which extracted protein showing an integrated and similar protein weight distribution compared to SSM. Also, this protein extracted chloride-urea showed a highest digestibility in vitro(by pepsin)(54.2%). These results indicated that choline chloride-urea extraction is better than alkaline extraction for SSM.
基金National Natural Science Foundation of China(No.81660649)Hainan Medical College Student Innovation and Entrepreneurship Training Program Project(No.201811810007)。
文摘Objective:To optimize the technological conditions of ultrasonic-assisted extraction of Amomum longiligulare T.L.Wu polysaccharides and increase the yield of polysaccharides.Methods:The polysaccharide was prepared by water extraction and alcohol precipitation method,and the yield of polysaccharide was taken as an index.The effects of ultrasonic time,extraction times,ultrasonic temperature,and water-to-material ratio on polysaccharide yield were investigated through a single factor experiment.Combined experimental design and response surface analysis were used to optimize the extraction process of Amomum longiligulare T.L.Wu polysaccharides.Results:The optimum conditions of ultrasonic-assisted extraction were determined as follows:extraction time of 29 min,three extraction times,water bath extraction temperature of 68℃,water-to-material ratio of 15:1;under these conditions,the polysaccharide yield was 10.69%.Conclusion:The results are close to the predicted values of the model.This optimization test is effective and feasible,and provides a reference for the related research of Amomum longiligulare T.L.Wu.
文摘With Nb-Ti-stabilized 430 ferritic stainless steel(NTS430FSS) and SUS 430 ferritic stainless steel(SUS430FSS) as experimental materials, the influence of precipitation on intergranular corrosion resistance was investigated. A series of aging treatment were carried out. The free-exposure corrosion test and double loop electrochemical potentiokinetic reactivation(DL-EPR) test with a scan rate of 1.67 m V/s at 26 °C were applied to evaluate the intergranular corrosion(IGC) resistance. Metallographic observation, scanning electron microscope(SEM), transmission electron microscope(TEM) with energy dispersive spectroscopy(EDS) and X-ray diffraction(XRD) analysis were conducted. The results show that IGC occurred in SUS430 FSS aged above 700 °C, while it occurred in NTS430 FSS as the temperature was improved to 1 050 °C. The critical degree of sensitization Ir/Ia reaches 0.305 in SUS430 FSS, which is higher than that of NTS430 FSS, i.e. 0.010, aged at 950 °C for 2 h. The TEM, EDS and XRD results show that a large amount of Cr23C6 precipitates with size of 60 nm×22 nm are located at the SUS430 FSS grain boundaries as chains. With the addition of Nb and Ti and reduction of C, the amount of precipitates reduces significantly in NTS430 FSS. A majority of Cr23C6 were replaced by Ti C and Nb C. Only a small amount of spherical Ti C(R=186 nm) and square Ti N(312 nm×192 nm) with Nb and Cr adsorbed are left along grain boundaries. Due to the dual stabilization of Nb and Ti, the precipitation of Cr23C6 is restrained, the chromium depleted region is avoided and accordingly the resistance to the intergranular corrosion is improved.