A lumped masses-springs model is proposed to analyze the dynamic response of an elastic-plastic cantilever beam resulting from impact. The numerical results are in good agreement with those by finite-element approache...A lumped masses-springs model is proposed to analyze the dynamic response of an elastic-plastic cantilever beam resulting from impact. The numerical results are in good agreement with those by finite-element approaches. The simplified model can catch the most essential features of elastic-plastic response of beams; in particular, it demonstrates the effect of elastic deformation on the distribution of bending moment and energy dissipation, and provides valuable quatitative results.展开更多
Based on the minimum principle of acceleration in the elastic-plastic continua under finite def ormation, the dynamic response of an elastic-perfectly plastic pin-ended beam subjected to rectangular impulse loading is...Based on the minimum principle of acceleration in the elastic-plastic continua under finite def ormation, the dynamic response of an elastic-perfectly plastic pin-ended beam subjected to rectangular impulse loading is studied with the help of a numerical approach. The calculated results once again show the anomalous behavior of the beam during its response process, which was previously found in [1]. By carefully analyzing the instantaneous distribution of the bending moment, the membrane force, the curvature and displacement during the response process, it is concluded that the interactive effect between the geometry and materials nonlinearities of the structure is the key reason for leading to the anomalous behavior. This will be helpful for clarifying some misunderstandings in explaining the problem before.展开更多
基金The project is supported by National Natural Science Foundation of China
文摘A lumped masses-springs model is proposed to analyze the dynamic response of an elastic-plastic cantilever beam resulting from impact. The numerical results are in good agreement with those by finite-element approaches. The simplified model can catch the most essential features of elastic-plastic response of beams; in particular, it demonstrates the effect of elastic deformation on the distribution of bending moment and energy dissipation, and provides valuable quatitative results.
基金the National Natural Science Foundation of China.
文摘Based on the minimum principle of acceleration in the elastic-plastic continua under finite def ormation, the dynamic response of an elastic-perfectly plastic pin-ended beam subjected to rectangular impulse loading is studied with the help of a numerical approach. The calculated results once again show the anomalous behavior of the beam during its response process, which was previously found in [1]. By carefully analyzing the instantaneous distribution of the bending moment, the membrane force, the curvature and displacement during the response process, it is concluded that the interactive effect between the geometry and materials nonlinearities of the structure is the key reason for leading to the anomalous behavior. This will be helpful for clarifying some misunderstandings in explaining the problem before.