期刊文献+
共找到129篇文章
< 1 2 7 >
每页显示 20 50 100
基于BiLSTM-XGBoost混合模型的储层岩性识别 被引量:1
1
作者 杜睿山 黄玉朋 +2 位作者 孟令东 张轶楠 周长坤 《计算机系统应用》 2024年第6期108-116,共9页
储层岩性分类是地质研究基础,基于数据驱动的机器学习模型虽然能较好地识别储层岩性,但由于测井数据是特殊的序列数据,模型很难有效提取数据的空间相关性,造成模型对储层识别仍存在不足.针对此问题,本文结合双向长短期循环神经网络(bidi... 储层岩性分类是地质研究基础,基于数据驱动的机器学习模型虽然能较好地识别储层岩性,但由于测井数据是特殊的序列数据,模型很难有效提取数据的空间相关性,造成模型对储层识别仍存在不足.针对此问题,本文结合双向长短期循环神经网络(bidirectional long short-term memory,BiLSTM)和极端梯度提升决策树(extreme gradient boosting decision tree,XGBoost),提出双向记忆极端梯度提升(BiLSTM-XGBoost,BiXGB)模型预测储层岩性.该模型在传统XGBoost基础上融入了BiLSTM,大大增强了模型对测井数据的特征提取能力.BiXGB模型使用BiLSTM对测井数据进行特征提取,将提取到的特征传递给XGBoost分类模型进行训练和预测.将BiXGB模型应用于储层岩性数据集时,模型预测的总体精度达到了91%.为了进一步验证模型的准确性和稳定性,将模型应用于UCI公开的Occupancy序列数据集,结果显示模型的预测总体精度也高达93%.相较于其他机器学习模型,BiXGB模型能准确地对序列数据进行分类,提高了储层岩性的识别精度,满足了油气勘探的实际需要,为储层岩性识别提供了新的方法. 展开更多
关键词 神经网络 机器学习 测井数据 岩性分类 BiLSTM xgboost
下载PDF
结合SVM与XGBoost的链式多路径覆盖测试用例生成
2
作者 钱忠胜 俞情媛 +3 位作者 张丁 姚昌森 秦朗悦 成轶伟 《软件学报》 EI CSCD 北大核心 2024年第6期2795-2820,共26页
机器学习方法可很好地与软件测试相结合,增强测试效果,但少有学者将其运用于测试数据生成方面.为进一步提高测试数据生成效率,提出一种结合SVM(support vector machine)和XGBoost(extreme gradient boosting)的链式模型,并基于此模型借... 机器学习方法可很好地与软件测试相结合,增强测试效果,但少有学者将其运用于测试数据生成方面.为进一步提高测试数据生成效率,提出一种结合SVM(support vector machine)和XGBoost(extreme gradient boosting)的链式模型,并基于此模型借助遗传算法实现多路径测试数据生成.首先,利用一定样本训练若干个用于预测路径节点状态的子模型(SVM和XGBoost),通过子模型的预测精度值筛选最优子模型,并根据路径节点顺序将其依次链接,形成一个链式模型C-SVMXGBoost(chained SVM and XGBoost).在利用遗传算法生成测试用例时,使用训练好的链式模型代替插桩法获取测试数据覆盖路径(预测路径),寻找预测路径与目标路径相似的路径集,对存在相似路径集的预测路径进行插桩验证,获取精确路径,计算适应度值.在交叉变异过程中引入样本集中路径层级深度较大的优秀测试用例进行重用,生成覆盖目标路径的测试数据.最后,保留进化生成中产生的适应度较高的个体,更新链式模型C-SVMXGBoost,进一步提高测试效率.实验表明,C-SVMXGBoost较其他各对比链式模型更适合解决路径预测问题,可提高测试效率.并且通过与已有经典方法相比,所提方法在覆盖率上提高可达15%,平均进化代数也有所降低,在较大规模程序上其降低百分比可达65%. 展开更多
关键词 测试用例 SVM xgboost 链式模型 多路径覆盖
下载PDF
基于SC-XGBoost的电站燃煤低位发热量软测量方法
3
作者 乔世超 王轶男 +4 位作者 吕佳阳 陈衡 刘涛 徐钢 翟融融 《煤炭科学技术》 EI CAS CSCD 北大核心 2024年第S01期332-340,共9页
随着国家大力推进能源供给侧结构性改革,新能源装机容量不断提升,电力市场竞争愈加激烈。另一方面,全球煤炭市场的复杂多变,导致以煤炭为能量来源的发电企业成本上涨。燃煤发热量是衡量煤质的重要评价标准之一,也是采购煤炭最重要的依据... 随着国家大力推进能源供给侧结构性改革,新能源装机容量不断提升,电力市场竞争愈加激烈。另一方面,全球煤炭市场的复杂多变,导致以煤炭为能量来源的发电企业成本上涨。燃煤发热量是衡量煤质的重要评价标准之一,也是采购煤炭最重要的依据,对燃煤发热量进行准确预测能够有效地控制电厂运行采购成本。为了实现燃煤发热量的高效预测,采用Pearson系数对相关变量进行特征选取,采用基于密度的噪点空间聚类(Density-Based Spatial Clustering of Applications with Noise,DBSCAN)算法对某电厂自备煤厂近2年1733条化验数据进行去噪,对去噪后数据进行谱聚类(Spectral Clustering,SC)分析。将分类后的子样本集采用极致梯度提升(Extreme Gradient Boosting,XGBoost)算法分别建立预测模型,并与最小二乘法回归(Ordinary Least Squares,OLS)、支持向量机(Support Vector Machines,SVM)模型进行性能比较。结果表明,基于XGBoost的电站燃煤发热量预测模型相较于其他算法准确性有明显提升,泛化能力更强。对经过SC算法分类后的燃煤分别建立预测模型能够进一步提高模型的精细化水平,为燃煤电站发热量预测提供一种可靠高效的方法。 展开更多
关键词 低位发热量 机器学习 谱聚类 极致梯度提升(xgboost) 软测量
下载PDF
井下动态环境基于DAE的XGBoost自适应定位算法研究
4
作者 洪金祥 崔丽珍 窦占树 《传感器与微系统》 CSCD 北大核心 2024年第10期23-26,30,共5页
针对煤矿井下高动态环境导致WiFi定位模型的精度降低的问题,提出极端梯度提升(XGBoost)的指纹定位算法,利用其高维数据特征的学习能力完成定位。与传统的梯度提升树(GBDT)算法相比,在完成更好定位效果的同时,速度也大大提升。同时针对W... 针对煤矿井下高动态环境导致WiFi定位模型的精度降低的问题,提出极端梯度提升(XGBoost)的指纹定位算法,利用其高维数据特征的学习能力完成定位。与传统的梯度提升树(GBDT)算法相比,在完成更好定位效果的同时,速度也大大提升。同时针对WiFi数据的波动性和XGBoost算法面对动态环境模型漂移问题,分别提出融合降噪自编码器(DAE)和自适应机制的D-XGBoost算法和Z-XGBoost算法。实验结果表明:XGBoost算法的定位精度比GBDT算法提高了,效率提高了5倍多。融合DAE的D-XG-Boost算法的定位准确率比XGBoost算法提高了17%;融合了自适应机制的Z-XGBoost算法有效降低了模型漂移造成的误差。所提改进算法更好地改善了WiFi定位模型精度降低和模型漂移问题。 展开更多
关键词 极端梯度提升 井下指纹定位 模型漂移 降噪自编码器 误差补偿
下载PDF
基于改进XGBoost的金融客户投资行为特征选择方法
5
作者 吴成英 马东方 《计算机应用》 CSCD 北大核心 2024年第S01期330-336,共7页
金融客户投资购买行为是投资者动态购买理财产品交易决策的综合结果,受到客户自身属性、产品因素、行情信息和历史交易等多个不同因素的影响,原始因子属性的特征维度庞大、拟合风险偏高。现有研究主要通过不同的算法提高特征选择的准确... 金融客户投资购买行为是投资者动态购买理财产品交易决策的综合结果,受到客户自身属性、产品因素、行情信息和历史交易等多个不同因素的影响,原始因子属性的特征维度庞大、拟合风险偏高。现有研究主要通过不同的算法提高特征选择的准确率,忽略了不同群体的差异化特征及动态因素的影响。因此,提出一种改进XGBoost(eXtreme Gradient Boosting)的特征选择算法,并在金融客户投资行为上应用研究。针对客户群体投资行为的差异性,多维度综合量化分析投资行为,以解决单一投资行为指标不合理问题;对不同客户群体通过主成分分析(PCA)降维和优化的K-均值(K-means)聚类算法进行多属性融合聚类,然后分别对聚类后的不同群体使用改进XGBoost进行多分类预测,并通过修剪特征因子提升预测准确率。实验结果表明,使用改进XGBoost后,金融客户投资行为的特征因子维度更贴近实际,准确率更高。 展开更多
关键词 特征选择 xgboost 多类别分类 主成分分析 K-MEANS聚类 投资行为
下载PDF
基于WKPCA与IEDO-XGBoost的变压器故障诊断方法研究
6
作者 张容槟 徐耀松 牛元平 《电工电能新技术》 CSCD 北大核心 2024年第10期24-42,共19页
针对变压器故障的特点,将加权核主成分分析技术与IEDO-XGBoost相结合,提出了一种新的变压器故障诊断模型。该方法主要将溶解气体分析技术与无编码比值法相结合,获取变压器的故障特征,利用WKPCA对其进行降维处理,并将归一化处理后的故障... 针对变压器故障的特点,将加权核主成分分析技术与IEDO-XGBoost相结合,提出了一种新的变压器故障诊断模型。该方法主要将溶解气体分析技术与无编码比值法相结合,获取变压器的故障特征,利用WKPCA对其进行降维处理,并将归一化处理后的故障样本数据作为IEDO-XGBoost模型的输入,输出变压器故障诊断类型及其诊断准确率。选取20维变压器故障特征数据进行WKPCA降维处理,加快了模型的收敛速度;采用自适应正余弦策略和高斯变异策略对指数分布优化器算法进行改进,并用10个典型测试函数对改进后的指数分布优化算法性能进行了测试,结果表明改进后的指数分布优化算法具有更快的收敛速度和全局搜索能力。然后,利用改进的指数分布算法来确定XGBoost模型中的多个最优参数。仿真结果表明,该模型的诊断准确率为91.82%,分别比EDO-XGBoost、NGO-XGBoost、GJO-XGBoost、GWO-XGBoost和WOA-XGBoost故障诊断模型高2.73%、3.64%、5.46%、8.18%和10.91%,验证了本文所提方法能够有效提高变压器故障诊断性能。 展开更多
关键词 变压器 加权核主成分分析 故障诊断 溶解气体分析 指数分布优化算法 极端梯度提升
下载PDF
An empirical method for joint inversion of wave and wind parameters based on SAR and wave spectrometer data
7
作者 Yong Wan Xiaona Zhang +2 位作者 Shuyan Lang Ennan Ma Yongshou Dai 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第5期133-144,共12页
Synthetic aperture radar(SAR)and wave spectrometers,crucial in microwave remote sensing,play an essential role in monitoring sea surface wind and wave conditions.However,they face inherent limitations in observing sea... Synthetic aperture radar(SAR)and wave spectrometers,crucial in microwave remote sensing,play an essential role in monitoring sea surface wind and wave conditions.However,they face inherent limitations in observing sea surface phenomena.SAR systems,for instance,are hindered by an azimuth cut-off phenomenon in sea surface wind field observation.Wave spectrometers,while unaffected by the azimuth cutoff phenomenon,struggle with low azimuth resolution,impacting the capture of detailed wave and wind field data.This study utilizes SAR and surface wave investigation and monitoring(SWIM)data to initially extract key feature parameters,which are then prioritized using the extreme gradient boosting(XGBoost)algorithm.The research further addresses feature collinearity through a combined analysis of feature importance and correlation,leading to the development of an inversion model for wave and wind parameters based on XGBoost.A comparative analysis of this model with ERA5 reanalysis and buoy data for of significant wave height,mean wave period,wind direction,and wind speed reveals root mean square errors of 0.212 m,0.525 s,27.446°,and 1.092 m/s,compared to 0.314 m,0.888 s,27.698°,and 1.315 m/s from buoy data,respectively.These results demonstrate the model’s effective retrieval of wave and wind parameters.Finally,the model,incorporating altimeter and scatterometer data,is evaluated against SAR/SWIM single and dual payload inversion methods across different wind speeds.This comparison highlights the model’s superior inversion accuracy over other methods. 展开更多
关键词 synthetic aperture radar(SAR) wave spectrometer extreme gradient boosting(xgboost) joint inversion method wave and wind parameters
下载PDF
基于ISSA-XGBoost的毕赤酵母菌发酵软测量
8
作者 沈瑶 张立刚 王建扬 《传感器与微系统》 CSCD 北大核心 2024年第8期122-125,共4页
针对毕赤酵母菌发酵过程菌体浓度难以在线检测,离线测量又存在极易染菌导致数据集不完整等问题,提出了一种基于改进麻雀搜索算法(ISSA)优化极致梯度提升(XGBoost)的软测量建模方法。首先,利用主成分分析(PCA)算法对样本数据进行主元分析... 针对毕赤酵母菌发酵过程菌体浓度难以在线检测,离线测量又存在极易染菌导致数据集不完整等问题,提出了一种基于改进麻雀搜索算法(ISSA)优化极致梯度提升(XGBoost)的软测量建模方法。首先,利用主成分分析(PCA)算法对样本数据进行主元分析,降低噪声和冗余度;然后,在标准麻雀算法(SSA)中引入自适应超参数和混合变异策略,增强了算法跳出局部极值和全局搜索的能力;最后,构建菌体浓度的ISSA-XGBoost软测量模型,并与XGBoost、SSA-XGBoost模型进行比较。仿真实验结果表明:ISSA-XGBoost模型的均方根误差(RMSE)、平均相对误差(MRE)均比XGBoost、SSA-XGBoost模型低,且ISSA-XGBoost的决定系数(R^(2))更接近于1,说明预测精度明显优于改进前,能够满足对毕赤酵母菌发酵过程菌体浓度的实时测量。 展开更多
关键词 毕赤酵母 麻雀算法 极致梯度提升 软测量模型
下载PDF
在线医药电商评论情感分析——基于XGBoost集成加权词向量和大语言模型的情感识别模型
9
作者 田梦影 时维 《科技和产业》 2024年第9期128-135,共8页
消费者评论是考察消费者情感的重要数据源,对商品评论进行数据挖掘是帮助在线医药电商改善经营的重要途径。立足于在线医药电商的用户评论,基于SO-PMI(情感倾向点互信息)算法构建该领域情感词典,对评论词向量进行情感加权。利用XGBoost... 消费者评论是考察消费者情感的重要数据源,对商品评论进行数据挖掘是帮助在线医药电商改善经营的重要途径。立足于在线医药电商的用户评论,基于SO-PMI(情感倾向点互信息)算法构建该领域情感词典,对评论词向量进行情感加权。利用XGBoost(极限梯度提升树)集成词向量和LLM(大语言模型)构建情感识别模型,最后得出评论情感指数,从多个维度展开,分析消费者评论中的情感趋势。实证分析表明,构建的情感识别模型的AUC(曲线下的面积)等验证指标较LLM模型相比有进一步提升,具有一定的应用价值。 展开更多
关键词 在线医药电商 LLM(大语言模型) xgboost(极限梯度提升树)算法 情感指数 情感识别
下载PDF
基于XGBoost算法构建的ICU死亡风险预测模型的系统评价
10
作者 张黄鑫 周微微 +2 位作者 刘兰 韦皓 刘梦婕 《中国医疗设备》 2024年第10期111-119,138,共10页
目的系统评价基于极端梯度提升(eXtreme Gradient Boosting,XGBoost)算法构建的重症加强护理病房(Intensive Care Unit,ICU)死亡风险预测模型的研究现况。方法检索知网、万方、维普、PubMed、Embase、Web of Science、Scopus数据库,搜... 目的系统评价基于极端梯度提升(eXtreme Gradient Boosting,XGBoost)算法构建的重症加强护理病房(Intensive Care Unit,ICU)死亡风险预测模型的研究现况。方法检索知网、万方、维普、PubMed、Embase、Web of Science、Scopus数据库,搜集有关基于XGBoost算法构建的ICU死亡风险预测模型的研究,检索时限均为建库至2023年2月18日。由2名研究者独立筛选文献,提取资料并评价纳入研究的偏倚风险后,进行定性系统评价。结果共纳入12篇文献,纳入模型的受试者工作特征曲线下面积为0.750~0.941。10篇文献适用性较好,其余2篇文献适用性不清楚。12篇文献均存在高偏倚风险,偏倚主要来自于不合适的研究数据来源、研究对象的纳排标准不清晰、预测因子定义与评估不一致、基于单因素分析法筛选预测因子、缺乏完善的模型性能评估等。结论现有基于XGBoost算法构建的ICU死亡风险预测模型具有较好的区分度,但其临床预测的准确性还尚不明确。未来还需进一步完善相关研究设计,避免研究中的各类偏倚风险,加强模型的外部验证,确保模型在临床实践中的可行性及有效性。 展开更多
关键词 极端梯度提升算法 重症加强护理病房 死亡风险预测模型 机器学习 系统评价 预测模型偏倚风险评估工具
下载PDF
基于XGBoost的中法海洋卫星微波散射计海冰密集度反演研究
11
作者 牟晓恒 羊丽青 林文明 《海洋气象学报》 2024年第4期64-75,共12页
海冰密集度是监测海冰的重要要素之一,其时间变化和空间分布对于全球气候变化研究、航线规划和冰区作业等方面具有重要意义。中法海洋卫星(China-France Oceanography SATellite,CFOSAT)微波散射计(SCATterometer,简记为“CSCAT”)凭借... 海冰密集度是监测海冰的重要要素之一,其时间变化和空间分布对于全球气候变化研究、航线规划和冰区作业等方面具有重要意义。中法海洋卫星(China-France Oceanography SATellite,CFOSAT)微波散射计(SCATterometer,简记为“CSCAT”)凭借扇形波束旋转扫描的特点,可在单个网格内获得含有丰富入射角和方位角信息的多次观测样本,这为海冰密集度的准确反演创造了条件。考虑到目前尚未明确散射计测量要素与海冰密集度之间的定量关系,因此本文构建了利用CSCAT后向散射系数及其他观测要素进行海冰密集度反演的机器学习模型。首先,通过海洋和海冰卫星应用设施(Ocean and Sea Ice Satellite Application Facility,OSI SAF)所提供的微波辐射计海冰密集度产品与CSCAT后向散射系数匹配,得到用于海冰密集度反演的数据集。其次,利用XGBoost(eXtreme Gradient Boosting)机器学习算法构建基于CSCAT后向散射系数数据的海冰密集度反演模型。再次,对模型在不同季节、不同极区下的反演结果精度及实际空间分布特征进行了分析。南北两极对比结果表明,模型在北极海冰密集度反演上的表现优于南极,而不同季节对比结果表明,冬季海冰密集度模型反演误差最小。不同海冰密集度下的模型表现也存在一定差异,即当海冰密集度较高时,模型反演结果存在低估情况,网格为纯海水覆盖时,模型有时会错分为海冰。整体来看,虽然利用散射计后向散射系数直接进行海冰密集度反演与辐射计结果相比一致性有一定差异,但研究结果为海冰密集度反演提供了一种新的可能性。 展开更多
关键词 中法海洋卫星(CFOSAT) 散射计 海冰密集度(SIC) 海冰范围 xgboost算法
下载PDF
Bridge damage identification based on convolutional autoencoders and extreme gradient boosting trees
12
作者 Duan Yuanfeng Duan Zhengteng +1 位作者 Zhang Hongmei Cheng J.J.Roger 《Journal of Southeast University(English Edition)》 EI CAS 2024年第3期221-229,共9页
To enhance the accuracy and efficiency of bridge damage identification,a novel data-driven damage identification method was proposed.First,convolutional autoencoder(CAE)was used to extract key features from the accele... To enhance the accuracy and efficiency of bridge damage identification,a novel data-driven damage identification method was proposed.First,convolutional autoencoder(CAE)was used to extract key features from the acceleration signal of the bridge structure through data reconstruction.The extreme gradient boosting tree(XGBoost)was then used to perform analysis on the feature data to achieve damage detection with high accuracy and high performance.The proposed method was applied in a numerical simulation study on a three-span continuous girder and further validated experimentally on a scaled model of a cable-stayed bridge.The numerical simulation results show that the identification errors remain within 2.9%for six single-damage cases and within 3.1%for four double-damage cases.The experimental validation results demonstrate that when the tension in a single cable of the cable-stayed bridge decreases by 20%,the method accurately identifies damage at different cable locations using only sensors installed on the main girder,achieving identification accuracies above 95.8%in all cases.The proposed method shows high identification accuracy and generalization ability across various damage scenarios. 展开更多
关键词 structural health monitoring damage identification convolutional autoencoder(CAE) extreme gradient boosting tree(xgboost) machine learning
下载PDF
基于优化XGBoost的风电机组发电机前轴承故障预警 被引量:18
13
作者 魏乐 胡晓东 尹诗 《系统仿真学报》 CAS CSCD 北大核心 2021年第10期2335-2343,共9页
为了及时有效地识别发电机的异常运行状态,提出了基于贝叶斯优化极限梯度提升算法的风电机组发电机前轴承故障预警方法:利用有效的数据预处理方法处理数据采集与监视控制系统历史数据;基于贝叶斯优化的XGBoost (eXtreme Gradient Boosti... 为了及时有效地识别发电机的异常运行状态,提出了基于贝叶斯优化极限梯度提升算法的风电机组发电机前轴承故障预警方法:利用有效的数据预处理方法处理数据采集与监视控制系统历史数据;基于贝叶斯优化的XGBoost (eXtreme Gradient Boosting)算法构建风电机组发电机前轴承温度预测模型;基于3σ准则,确定风电机组发电机前轴承故障预警阈值。实验结果表明所提方法能提前监测到风电机组发电机前轴承异常信号。通过与采用随机搜索和网格搜索所建立的模型进行对比分析,验证了贝叶斯优化模型在泛化性能和预测精度上具有优势。 展开更多
关键词 xgboost(extreme gradient boosting)算法 风电机组 故障预警 贝叶斯优化
下载PDF
基于XGBoost的列控车载设备故障预测方法 被引量:10
14
作者 刘江 许康智 +2 位作者 蔡伯根 郭忠斌 王剑 《北京交通大学学报》 CAS CSCD 北大核心 2021年第4期95-106,共12页
列控车载设备的健康管理和故障预测是实现高速铁路关键装备智能化视情维护的重要途径.为了克服列控车载设备故障建模的复杂性和健康监测手段受限等问题,充分运用现场收集的设备运行记录数据,提出一种基于数据驱动的列控车载设备故障预... 列控车载设备的健康管理和故障预测是实现高速铁路关键装备智能化视情维护的重要途径.为了克服列控车载设备故障建模的复杂性和健康监测手段受限等问题,充分运用现场收集的设备运行记录数据,提出一种基于数据驱动的列控车载设备故障预测体系框架.建立了高速列车列控车载设备运行数据管理平台,基于大量历史现场数据构建训练及测试样本集,运用极端梯度提升(eXtreme Gradient Boosting,XGBoost)算法实施特定故障类型的模型训练与学习,并将所得故障模型用于故障概率的预测分析.以CTCS2-200H型列控车载设备为对象,运用实际数据对所提出的故障建模方法进行了验证,对不同建模样本规模、故障类型维度下的模型性能以及不同建模算法性能进行了对比.结果表明:基于XGBoost算法的建模方法能够有效揭示各特征量与故障之间的关联,所采用树的深度值越高,迭代收敛速度越快;相较于GBDT、RF算法,基于XGBoost的建模方法能够实现更高的预测正确率,在给定样本条件下达到稳定正确率所需训练时间分别减少了78.55%、12.47%,验证了该方法在大规模数据条件下的适用性和性能优势. 展开更多
关键词 列车控制 车载设备 故障预测 健康管理 极端梯度提升
下载PDF
基于Lasso和Xgboost的油价预测研究 被引量:12
15
作者 施国良 景志刚 范丽伟 《工业技术经济》 CSSCI 北大核心 2018年第7期31-37,共7页
鉴于国际原油价格波动的频繁性和对国民经济的重要性,油价的预测和油价的影响因素研究一直是国内外的研究热点。为了提高油价预测的准确性,本文在总结前人提出的油价影响因素的基础上,运用Lasso方法筛选出美国原油生产成本、WTI原油期... 鉴于国际原油价格波动的频繁性和对国民经济的重要性,油价的预测和油价的影响因素研究一直是国内外的研究热点。为了提高油价预测的准确性,本文在总结前人提出的油价影响因素的基础上,运用Lasso方法筛选出美国原油生产成本、WTI原油期货价格、中国原油产量等11个主要影响因素,之后使用Xgboost方法对油价进行预测。数值试验结果表明,相比较其它预测方法,本文构建的Lasso-Xgboost组合方法预测精度更高,泛化能力更强。最后本文应用已有模型对2018~2019年WTI原油价格进行趋势预测。 展开更多
关键词 Lasso方法 xgboost方法 Lasso-xgboost方法 WTI现货价格预测 模型误差 分类与回归树
下载PDF
基于Logistic回归和XGBoost的钓鱼网站检测方法 被引量:4
16
作者 杨鹏 曾朋 +1 位作者 赵广振 吕培培 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2019年第2期207-212,共6页
为兼顾钓鱼网站检测的速度和准确率,提出一种基于Logistic回归和XGBoost的钓鱼网站检测方法.根据网页的URL提取HTML特征、URL特征和基于TF-IDF的文本向量特征,结合Logistic回归将高维和稀疏的文本特征转换为概率特征.基于以上融合特征,... 为兼顾钓鱼网站检测的速度和准确率,提出一种基于Logistic回归和XGBoost的钓鱼网站检测方法.根据网页的URL提取HTML特征、URL特征和基于TF-IDF的文本向量特征,结合Logistic回归将高维和稀疏的文本特征转换为概率特征.基于以上融合特征,构建了XGBoost分类模型,给出了方法的时间复杂度分析,采集了真实数据作为实验数据集.实验结果表明,Logistic回归方法降低了融合特征的维度,检测速度优于直接融合方法;融合特征方法比单方面特征方法含有更多有效的信息,可供分类器进行学习,检测精度高于单方面特征方法,精确度达到96.67%,召回率为96.6%. 展开更多
关键词 钓鱼网站 LOGISTIC回归 集成学习 xgboost
下载PDF
基于XGBoost和无迹卡尔曼滤波自适应混合预测的电网虚假数据注入攻击检测 被引量:37
17
作者 刘鑫蕊 常鹏 孙秋野 《中国电机工程学报》 EI CSCD 北大核心 2021年第16期5462-5475,共14页
随着信息技术在电力系统中的广泛应用,电网正发展为一类信息系统与物理系统高度融合的电力信息物理系统(cyber-physical system,CPS)。而虚假数据注入攻击(false data injection attacks,FDIA)是影响电力CPS安全运行的隐患之一。为了能... 随着信息技术在电力系统中的广泛应用,电网正发展为一类信息系统与物理系统高度融合的电力信息物理系统(cyber-physical system,CPS)。而虚假数据注入攻击(false data injection attacks,FDIA)是影响电力CPS安全运行的隐患之一。为了能够检测与修正虚假数据注入攻击,提出一种基于极端梯度提升(extreme gradient boosting,XGBoost)结合无迹卡尔曼滤波(unscented Kalman filter,UKF)的电网虚假数据注入攻击检测方法。首先通过改进的加权灰色关联分析法进行相似日的选取,然后使用XGBoost进行电力系统日前负荷预测;将负荷预测结果经潮流计算得到的状态量与UKF动态状态估计得到的状态量进行自适应混合预测,以降低FDIA对状态预测的影响;最后基于预测值和静态状态估计值构造随机变量,通过中心极限定理比较随机变量的分布以进行FDIA检测与修正。IEEE-14和IEEE-118节点测试系统仿真结果验证了文中提出方法的有效性和准确性。 展开更多
关键词 电力信息物理系统 极端梯度提升 自适应混合预测 灰色关联分析法 中心极限定理
下载PDF
基于XGBoost的隧道掘进机操作参数智能决策系统设计 被引量:8
18
作者 王飞 龚国芳 +1 位作者 段理文 秦永峰 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2020年第4期633-641,共9页
为了实现隧道施工的同质化,提出基于极端梯度提升算法(XGBoost)预测模型的隧道掘进机(TBM)操作参数的智能决策方法.定义场操作系数指数(FOI)作为替代传统场切深指数(FPI)的围岩级别特征参数,使用XGBoost算法建立预测模型以实现对FOI的预... 为了实现隧道施工的同质化,提出基于极端梯度提升算法(XGBoost)预测模型的隧道掘进机(TBM)操作参数的智能决策方法.定义场操作系数指数(FOI)作为替代传统场切深指数(FPI)的围岩级别特征参数,使用XGBoost算法建立预测模型以实现对FOI的预测,对围岩级别进行预测、判断.通过对优秀司机在特定FOI下TBM操作参数的选择,建立专家模型实现FOI与特定TBM操作参数的关联,实现TBM操作参数的智能决策.使用引松工程的现场数据进行对比实验,结果表明,设计的TBM操作参数的智能决策系统能够实现对优秀的TBM司机操作参数决策的复现,相比于以FPI为特征参数的传统智能决策系统,新系统的推进速度和刀盘转速两部分的平均相对误差分别下降8.84%和7.97%. 展开更多
关键词 隧道掘进机(TBM) 智能决策 场操作系数指数(FOI) 极端梯度提升算法(xgboost) 预测
下载PDF
基于GRU和XGBoost的矿压显现规律预测 被引量:6
19
作者 柴敬 刘义龙 +2 位作者 王安义 屈世甲 欧阳一博 《工矿自动化》 北大核心 2022年第1期91-97,共7页
采用光纤传感器监测的光纤频移值对矿压显现规律进行表征的过程中,传感器采集的数据存在缺失现象,无法准确预测矿压显现规律。针对该问题,以千秋煤矿为工程背景,在假设光纤下半部分数据丢失的前提下,引入GRU(门控循环单元)和LSTM(长短... 采用光纤传感器监测的光纤频移值对矿压显现规律进行表征的过程中,传感器采集的数据存在缺失现象,无法准确预测矿压显现规律。针对该问题,以千秋煤矿为工程背景,在假设光纤下半部分数据丢失的前提下,引入GRU(门控循环单元)和LSTM(长短期记忆网络)2种预测模型,对缺失的光纤频移值进行对比预测,得出GRU模型的收敛速度优于LSTM模型的收敛速度,说明基于GRU模型的缺失值处理方法较优。将原始完整的光纤频移值转换为可表征矿压显现位置的光纤平均频移变化度,引入XGBoost(极端梯度提升)模型和BP神经网络模型进行对比预测,XGBoost模型能准确预测出测试集中所有出现“尖峰”的位置,而BP神经网络模型只预测出2处“尖峰”位置,说明XGBoost模型的预测效果优于BP神经网络模型的预测效果。将预测出的光纤频移缺失值替换至缺失位置,形成“完整”光纤频移值数据,将该数据转换为光纤平均频移变化度后,采用XGBoost模型进行预测。验证结果表明:LSTM模型及GRU模型均可准确预测出光纤下半部分的数据,且GRU模型准确性较LSTM模型准确性高;使用XGBoost可准确预测出测试集中出现的周期来压;通过GRU模型预测出的缺失数据经整合至缺失位置后,使用XGBoost模型仍可进行有效的矿压预测。 展开更多
关键词 矿压显现规律 极端梯度提升算法 xgboost GRU 光纤频移值 光纤平均频移变化度
下载PDF
基于RFRFE与ISSA-XGBoost的变压器故障辨识方法 被引量:13
20
作者 王雨虹 王志中 《电子测量与仪器学报》 CSCD 北大核心 2021年第12期142-150,共9页
针对变压器故障诊断精度低的问题,提出了随机森林-递归特征消除(RFRFE)算法与改进麻雀算法(ISSA)优化极端梯度提升树(XGBoost)的变压器故障诊断方法。首先以诊断精度为标准,利用RFRFE算法选择重要特征变量,去除冗余特征;然后采用服从均... 针对变压器故障诊断精度低的问题,提出了随机森林-递归特征消除(RFRFE)算法与改进麻雀算法(ISSA)优化极端梯度提升树(XGBoost)的变压器故障诊断方法。首先以诊断精度为标准,利用RFRFE算法选择重要特征变量,去除冗余特征;然后采用服从均匀分布随机调整策略和莱维飞行策略来对传统麻雀算法(SSA)进行改进,并将ISSA与SSA和粒子群算法(PSO)进行算法性能测试,证明其分类精度和网络寻优能力均有所提升;最后使用改进的麻雀算法对XGBoost相关超参数进行寻优,获取RFRFE与ISSA-XGBoost相结合的综合故障诊断模型,并与PSO-XGBoost和SSA-XGBoost故障诊断模型对比诊断效果,结果表明ISSA-XGBoost故障诊断率为91.08%,比PSO-XGBoost和SSA-XGBoost分别提高了9.9%、6.93%验证了所提方法能够有效地提高变压器故障诊断性能。 展开更多
关键词 变压器 故障诊断 RFRFE算法 麻雀算法 xgboost
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部