To enhance the accuracy and efficiency of bridge damage identification,a novel data-driven damage identification method was proposed.First,convolutional autoencoder(CAE)was used to extract key features from the accele...To enhance the accuracy and efficiency of bridge damage identification,a novel data-driven damage identification method was proposed.First,convolutional autoencoder(CAE)was used to extract key features from the acceleration signal of the bridge structure through data reconstruction.The extreme gradient boosting tree(XGBoost)was then used to perform analysis on the feature data to achieve damage detection with high accuracy and high performance.The proposed method was applied in a numerical simulation study on a three-span continuous girder and further validated experimentally on a scaled model of a cable-stayed bridge.The numerical simulation results show that the identification errors remain within 2.9%for six single-damage cases and within 3.1%for four double-damage cases.The experimental validation results demonstrate that when the tension in a single cable of the cable-stayed bridge decreases by 20%,the method accurately identifies damage at different cable locations using only sensors installed on the main girder,achieving identification accuracies above 95.8%in all cases.The proposed method shows high identification accuracy and generalization ability across various damage scenarios.展开更多
Efficient water quality monitoring and ensuring the safety of drinking water by government agencies in areas where the resource is constantly depleted due to anthropogenic or natural factors cannot be overemphasized. ...Efficient water quality monitoring and ensuring the safety of drinking water by government agencies in areas where the resource is constantly depleted due to anthropogenic or natural factors cannot be overemphasized. The above statement holds for West Texas, Midland, and Odessa Precisely. Two machine learning regression algorithms (Random Forest and XGBoost) were employed to develop models for the prediction of total dissolved solids (TDS) and sodium absorption ratio (SAR) for efficient water quality monitoring of two vital aquifers: Edward-Trinity (plateau), and Ogallala aquifers. These two aquifers have contributed immensely to providing water for different uses ranging from domestic, agricultural, industrial, etc. The data was obtained from the Texas Water Development Board (TWDB). The XGBoost and Random Forest models used in this study gave an accurate prediction of observed data (TDS and SAR) for both the Edward-Trinity (plateau) and Ogallala aquifers with the R<sup>2</sup> values consistently greater than 0.83. The Random Forest model gave a better prediction of TDS and SAR concentration with an average R, MAE, RMSE and MSE of 0.977, 0.015, 0.029 and 0.00, respectively. For the XGBoost, an average R, MAE, RMSE, and MSE of 0.953, 0.016, 0.037 and 0.00, respectively, were achieved. The overall performance of the models produced was impressive. From this study, we can clearly understand that Random Forest and XGBoost are appropriate for water quality prediction and monitoring in an area of high hydrocarbon activities like Midland and Odessa and West Texas at large.展开更多
Traditional 3Ni weathering steel cannot completely meet the requirements for offshore engineering development,resulting in the design of novel 3Ni steel with the addition of microalloy elements such as Mn or Nb for st...Traditional 3Ni weathering steel cannot completely meet the requirements for offshore engineering development,resulting in the design of novel 3Ni steel with the addition of microalloy elements such as Mn or Nb for strength enhancement becoming a trend.The stress-assisted corrosion behavior of a novel designed high-strength 3Ni steel was investigated in the current study using the corrosion big data method.The information on the corrosion process was recorded using the galvanic corrosion current monitoring method.The gradi-ent boosting decision tree(GBDT)machine learning method was used to mine the corrosion mechanism,and the importance of the struc-ture factor was investigated.Field exposure tests were conducted to verify the calculated results using the GBDT method.Results indic-ated that the GBDT method can be effectively used to study the influence of structural factors on the corrosion process of 3Ni steel.Dif-ferent mechanisms for the addition of Mn and Cu to the stress-assisted corrosion of 3Ni steel suggested that Mn and Cu have no obvious effect on the corrosion rate of non-stressed 3Ni steel during the early stage of corrosion.When the corrosion reached a stable state,the in-crease in Mn element content increased the corrosion rate of 3Ni steel,while Cu reduced this rate.In the presence of stress,the increase in Mn element content and Cu addition can inhibit the corrosion process.The corrosion law of outdoor-exposed 3Ni steel is consistent with the law based on corrosion big data technology,verifying the reliability of the big data evaluation method and data prediction model selection.展开更多
BACKGROUND Development of distant metastasis(DM)is a major concern during treatment of nasopharyngeal carcinoma(NPC).However,studies have demonstrated im-proved distant control and survival in patients with advanced N...BACKGROUND Development of distant metastasis(DM)is a major concern during treatment of nasopharyngeal carcinoma(NPC).However,studies have demonstrated im-proved distant control and survival in patients with advanced NPC with the addition of chemotherapy to concomitant chemoradiotherapy.Therefore,precise prediction of metastasis in patients with NPC is crucial.AIM To develop a predictive model for metastasis in NPC using detailed magnetic resonance imaging(MRI)reports.METHODS This retrospective study included 792 patients with non-distant metastatic NPC.A total of 469 imaging variables were obtained from detailed MRI reports.Data were stratified and randomly split into training(50%)and testing sets.Gradient boosting tree(GBT)models were built and used to select variables for predicting DM.A full model comprising all variables and a reduced model with the top-five variables were built.Model performance was assessed by area under the curve(AUC).RESULTS Among the 792 patients,94 developed DM during follow-up.The number of metastatic cervical nodes(30.9%),tumor invasion in the posterior half of the nasal cavity(9.7%),two sides of the pharyngeal recess(6.2%),tubal torus(3.3%),and single side of the parapharyngeal space(2.7%)were the top-five contributors for predicting DM,based on their relative importance in GBT models.The testing AUC of the full model was 0.75(95%confidence interval[CI]:0.69-0.82).The testing AUC of the reduced model was 0.75(95%CI:0.68-0.82).For the whole dataset,the full(AUC=0.76,95%CI:0.72-0.82)and reduced models(AUC=0.76,95%CI:0.71-0.81)outperformed the tumor node-staging system(AUC=0.67,95%CI:0.61-0.73).CONCLUSION The GBT model outperformed the tumor node-staging system in predicting metastasis in NPC.The number of metastatic cervical nodes was identified as the principal contributing variable.展开更多
The Sentinel-2 satellites are providing an unparalleled wealth of high-resolution remotely sensed information with a short revisit cycle, which is ideal for mapping burned areas both accurately and timely. This paper ...The Sentinel-2 satellites are providing an unparalleled wealth of high-resolution remotely sensed information with a short revisit cycle, which is ideal for mapping burned areas both accurately and timely. This paper proposes an automated methodology for mapping burn scars using pairs of Sentinel-2 imagery, exploiting the state-of-the-art eXtreme Gradient Boosting (XGB) machine learning framework. A large database of 64 reference wildfire perimeters in Greece from 2016 to 2019 is used to train the classifier. An empirical methodology for appropriately sampling the training patterns from this database is formulated, which guarantees the effectiveness of the approach and its computational efficiency. A difference (pre-fire minus post-fire) spectral index is used for this purpose, upon which we appropriately identify the clear and fuzzy value ranges. To reduce the data volume, a super-pixel segmentation of the images is also employed, implemented via the QuickShift algorithm. The cross-validation results showcase the effectiveness of the proposed algorithm, with the average commission and omission errors being 9% and 2%, respectively, and the average Matthews correlation coefficient (MCC) equal to 0.93.展开更多
From 17 November to 27 December 2022, extremely cold snowstorms frequently swept across North America and Eurasia. Diagnostic analysis reveals that these extreme cold events were closely related to the establishment o...From 17 November to 27 December 2022, extremely cold snowstorms frequently swept across North America and Eurasia. Diagnostic analysis reveals that these extreme cold events were closely related to the establishment of blocking circulations. Alaska Blocking(AB) and subsequent Ural Blocking(UB) episodes are linked to the phase transition of the North Atlantic Oscillation(NAO) and represent the main atmospheric regimes in the Northern Hemisphere. The downstream dispersion and propagation of Rossby wave packets from Alaska to East Asia provide a large-scale connection between AB and UB episodes. Based on the nonlinear multi-scale interaction(NMI) model, we found that the meridional potential vorticity gradient(PVy) in November and December of 2022 was anomalously weak in the mid-high latitudes from North America to Eurasia and provided a favorable background for the prolonged maintenance of UB and AB events and the generation of associated severe extreme snowstorms. However, the difference in the UB in terms of its persistence,location, and strength between November and December is related to the positive(negative) NAO in November(December). During the La Ni?a winter of 2022, the UB and AB events are related to the downward propagation of stratospheric anomalies, in addition to contributions by La Ni?a and low Arctic sea ice concentrations as they pertain to reducing PVyin mid-latitudes.展开更多
Accurate assessment of undrained shear strength(USS)for soft sensitive clays is a great concern in geotechnical engineering practice.This study applies novel data-driven extreme gradient boosting(XGBoost)and random fo...Accurate assessment of undrained shear strength(USS)for soft sensitive clays is a great concern in geotechnical engineering practice.This study applies novel data-driven extreme gradient boosting(XGBoost)and random forest(RF)ensemble learning methods for capturing the relationships between the USS and various basic soil parameters.Based on the soil data sets from TC304 database,a general approach is developed to predict the USS of soft clays using the two machine learning methods above,where five feature variables including the preconsolidation stress(PS),vertical effective stress(VES),liquid limit(LL),plastic limit(PL)and natural water content(W)are adopted.To reduce the dependence on the rule of thumb and inefficient brute-force search,the Bayesian optimization method is applied to determine the appropriate model hyper-parameters of both XGBoost and RF.The developed models are comprehensively compared with three comparison machine learning methods and two transformation models with respect to predictive accuracy and robustness under 5-fold cross-validation(CV).It is shown that XGBoost-based and RF-based methods outperform these approaches.Besides,the XGBoostbased model provides feature importance ranks,which makes it a promising tool in the prediction of geotechnical parameters and enhances the interpretability of model.展开更多
Accurate prediction ofmonthly oil and gas production is essential for oil enterprises tomake reasonable production plans,avoid blind investment and realize sustainable development.Traditional oil well production trend...Accurate prediction ofmonthly oil and gas production is essential for oil enterprises tomake reasonable production plans,avoid blind investment and realize sustainable development.Traditional oil well production trend prediction methods are based on years of oil field production experience and expertise,and the application conditions are very demanding.With the rapid development of artificial intelligence technology,big data analysis methods are gradually applied in various sub-fields of the oil and gas reservoir development.Based on the data-driven artificial intelligence algorithmGradient BoostingDecision Tree(GBDT),this paper predicts the initial single-layer production by considering geological data,fluid PVT data and well data.The results show that the GBDT algorithm prediction model has great accuracy,significantly improving efficiency and strong universal applicability.The GBDTmethod trained in this paper can predict production,which is helpful for well site optimization,perforation layer optimization and engineering parameter optimization and has guiding significance for oilfield development.展开更多
It is important for regional water resources management to know the agricultural water consumption information several months in advance.Forecasting reference evapotranspiration(ET_(0))in the next few months is import...It is important for regional water resources management to know the agricultural water consumption information several months in advance.Forecasting reference evapotranspiration(ET_(0))in the next few months is important for irrigation and reservoir management.Studies on forecasting of multiple-month ahead ET_(0) using machine learning models have not been reported yet.Besides,machine learning models such as the XGBoost model has multiple parameters that need to be tuned,and traditional methods can get stuck in a regional optimal solution and fail to obtain a global optimal solution.This study investigated the performance of the hybrid extreme gradient boosting(XGBoost)model coupled with the Grey Wolf Optimizer(GWO)algorithm for forecasting multi-step ahead ET_(0)(1-3 months ahead),compared with three conventional machine learning models,i.e.,standalone XGBoost,multi-layer perceptron(MLP)and M5 model tree(M5)models in the subtropical zone of China.The results showed that theGWO-XGB model generally performed better than the other three machine learning models in forecasting 1-3 months ahead ET_(0),followed by the XGB,M5 and MLP models with very small differences among the three models.The GWO-XGB model performed best in autumn,while the MLP model performed slightly better than the other three models in summer.It is thus suggested to apply the MLP model for ET_(0) forecasting in summer but use the GWO-XGB model in other seasons.展开更多
In this paper,an advanced and optimized Light Gradient Boosting Machine(LGBM)technique is proposed to identify the intrusive activities in the Internet of Things(IoT)network.The followings are the major contributions:...In this paper,an advanced and optimized Light Gradient Boosting Machine(LGBM)technique is proposed to identify the intrusive activities in the Internet of Things(IoT)network.The followings are the major contributions:i)An optimized LGBM model has been developed for the identification of malicious IoT activities in the IoT network;ii)An efficient evolutionary optimization approach has been adopted for finding the optimal set of hyper-parameters of LGBM for the projected problem.Here,a Genetic Algorithm(GA)with k-way tournament selection and uniform crossover operation is used for efficient exploration of hyper-parameter search space;iii)Finally,the performance of the proposed model is evaluated using state-of-the-art ensemble learning and machine learning-based model to achieve overall generalized performance and efficiency.Simulation outcomes reveal that the proposed approach is superior to other considered methods and proves to be a robust approach to intrusion detection in an IoT environment.展开更多
Addressing classification and prediction challenges, tree ensemble models have gained significant importance. Boosting ensemble techniques are commonly employed for forecasting Type-II diabetes mellitus. Light Gradien...Addressing classification and prediction challenges, tree ensemble models have gained significant importance. Boosting ensemble techniques are commonly employed for forecasting Type-II diabetes mellitus. Light Gradient Boosting Machine (LightGBM) is a widely used algorithm known for its leaf growth strategy, loss reduction, and enhanced training precision. However, LightGBM is prone to overfitting. In contrast, CatBoost utilizes balanced base predictors known as decision tables, which mitigate overfitting risks and significantly improve testing time efficiency. CatBoost’s algorithm structure counteracts gradient boosting biases and incorporates an overfitting detector to stop training early. This study focuses on developing a hybrid model that combines LightGBM and CatBoost to minimize overfitting and improve accuracy by reducing variance. For the purpose of finding the best hyperparameters to use with the underlying learners, the Bayesian hyperparameter optimization method is used. By fine-tuning the regularization parameter values, the hybrid model effectively reduces variance (overfitting). Comparative evaluation against LightGBM, CatBoost, XGBoost, Decision Tree, Random Forest, AdaBoost, and GBM algorithms demonstrates that the hybrid model has the best F1-score (99.37%), recall (99.25%), and accuracy (99.37%). Consequently, the proposed framework holds promise for early diabetes prediction in the healthcare industry and exhibits potential applicability to other datasets sharing similarities with diabetes.展开更多
The database of 254 rockburst events was examined for rockburst damage classification using stochastic gradient boosting (SGB) methods. Five potentially relevant indicators including the stress condition factor, the...The database of 254 rockburst events was examined for rockburst damage classification using stochastic gradient boosting (SGB) methods. Five potentially relevant indicators including the stress condition factor, the ground support system capacity, the excavation span, the geological structure and the peak particle velocity of rockburst sites were analyzed. The performance of the model was evaluated using a 10 folds cross-validation (CV) procedure with 80%of original data during modeling, and an external testing set (20%) was employed to validate the prediction performance of the SGB model. Two accuracy measures for multi-class problems were employed: classification accuracy rate and Cohen’s Kappa. The accuracy analysis together with Kappa for the rockburst damage dataset reveals that the SGB model for the prediction of rockburst damage is acceptable.展开更多
The automatic seizure detection is significant for epilepsy diagnosis and it can alleviate the work intensity of inspecting prolonged electroencephalogram (EEG). This paper presents and investigates a novel machine ...The automatic seizure detection is significant for epilepsy diagnosis and it can alleviate the work intensity of inspecting prolonged electroencephalogram (EEG). This paper presents and investigates a novel machine learning approach utilizing gradient boosting to detect seizures from long-term EEG. We apply relative fluctuation index to extract features of long-term intracranial EEG data. A classifier trained with the gradient boosting algorithm is adopted to discriminate the seizure and non-seizure EEG signals. Smoothing and collar technique are finally used as post-processing in order to improve the detection accuracy further. The seizure detection method is assessed on Freiburg EEG datasets from 21 patients. The experimental results indicate that the proposed method yields an average sensitivity of 94. 60% with a false detection rate of 0. 18/h.展开更多
Complex modulus(G^(*))is one of the important criteria for asphalt classification according to AASHTO M320-10,and is often used to predict the linear viscoelastic behavior of asphalt binders.In addition,phase angle(φ...Complex modulus(G^(*))is one of the important criteria for asphalt classification according to AASHTO M320-10,and is often used to predict the linear viscoelastic behavior of asphalt binders.In addition,phase angle(φ)characterizes the deformation resilience of asphalt and is used to assess the ratio between the viscous and elastic components.It is thus important to quickly and accurately estimate these two indicators.The purpose of this investigation is to construct an extreme gradient boosting(XGB)model to predict G^(*)andφof graphene oxide(GO)modified asphaltat medium and high temperatures.Two data sets are gathered from previously published experiments,consisting of 357 samples for G^(*)and 339 samples forφ,and the se are used to develop the XGB model using nine inputs representing theasphalt binder components.The findings show that XGB is an excellent predictor of G^(*)andφof GO-modified asphalt,evaluated by the coefficient of determination R^(2)(R^(2)=0.990 and 0.9903 for G^(*)andφ,respectively)and root mean square error(RMSE=31.499 and 1.08 for G^(*)andφ,respectively).In addition,the model’s performance is compared with experimental results and five other machine learning(ML)models to highlight its accuracy.In the final step,the Shapley additive explanations(SHAP)value analysis is conducted to assess the impact of each input and the correlation between pairs of important features on asphalt’s two physical properties.展开更多
This work was to generate landslide susceptibility maps for the Three Gorges Reservoir(TGR) area, China by using different machine learning models. Three advanced machine learning methods, namely, gradient boosting de...This work was to generate landslide susceptibility maps for the Three Gorges Reservoir(TGR) area, China by using different machine learning models. Three advanced machine learning methods, namely, gradient boosting decision tree(GBDT), random forest(RF) and information value(InV) models, were used, and the performances were assessed and compared. In total, 202 landslides were mapped by using a series of field surveys, aerial photographs, and reviews of historical and bibliographical data. Nine causative factors were then considered in landslide susceptibility map generation by using the GBDT, RF and InV models. All of the maps of the causative factors were resampled to a resolution of 28.5 m. Of the 486289 pixels in the area,28526 pixels were landslide pixels, and 457763 pixels were non-landslide pixels. Finally, landslide susceptibility maps were generated by using the three machine learning models, and their performances were assessed through receiver operating characteristic(ROC) curves, the sensitivity, specificity,overall accuracy(OA), and kappa coefficient(KAPPA). The results showed that the GBDT, RF and In V models in overall produced reasonable accurate landslide susceptibility maps. Among these three methods, the GBDT method outperforms the other two machine learning methods, which can provide strong technical support for producing landslide susceptibility maps in TGR.展开更多
To investigate the travel time prediction method of the freeway, a model based on the gradient boosting decision tree (GBDT) is proposed. Eleven variables (namely, travel time in current period T i , traffic flow in c...To investigate the travel time prediction method of the freeway, a model based on the gradient boosting decision tree (GBDT) is proposed. Eleven variables (namely, travel time in current period T i , traffic flow in current period Q i , speed in current period V i , density in current period K i , the number of vehicles in current period N i , occupancy in current period R i , traffic state parameter in current period X i , travel time in previous time period T i -1 , etc.) are selected to predict the travel time for 10 min ahead in the proposed model. Data obtained from VISSIM simulation is used to train and test the model. The results demonstrate that the prediction error of the GBDT model is smaller than those of the back propagation (BP) neural network model and the support vector machine (SVM) model. Travel time in current period T i is the most important variable among all variables in the GBDT model. The GBDT model can produce more accurate prediction results and mine the hidden nonlinear relationships deeply between variables and the predicted travel time.展开更多
基金The National Natural Science Foundation of China(No.52361165658,52378318,52078459).
文摘To enhance the accuracy and efficiency of bridge damage identification,a novel data-driven damage identification method was proposed.First,convolutional autoencoder(CAE)was used to extract key features from the acceleration signal of the bridge structure through data reconstruction.The extreme gradient boosting tree(XGBoost)was then used to perform analysis on the feature data to achieve damage detection with high accuracy and high performance.The proposed method was applied in a numerical simulation study on a three-span continuous girder and further validated experimentally on a scaled model of a cable-stayed bridge.The numerical simulation results show that the identification errors remain within 2.9%for six single-damage cases and within 3.1%for four double-damage cases.The experimental validation results demonstrate that when the tension in a single cable of the cable-stayed bridge decreases by 20%,the method accurately identifies damage at different cable locations using only sensors installed on the main girder,achieving identification accuracies above 95.8%in all cases.The proposed method shows high identification accuracy and generalization ability across various damage scenarios.
文摘Efficient water quality monitoring and ensuring the safety of drinking water by government agencies in areas where the resource is constantly depleted due to anthropogenic or natural factors cannot be overemphasized. The above statement holds for West Texas, Midland, and Odessa Precisely. Two machine learning regression algorithms (Random Forest and XGBoost) were employed to develop models for the prediction of total dissolved solids (TDS) and sodium absorption ratio (SAR) for efficient water quality monitoring of two vital aquifers: Edward-Trinity (plateau), and Ogallala aquifers. These two aquifers have contributed immensely to providing water for different uses ranging from domestic, agricultural, industrial, etc. The data was obtained from the Texas Water Development Board (TWDB). The XGBoost and Random Forest models used in this study gave an accurate prediction of observed data (TDS and SAR) for both the Edward-Trinity (plateau) and Ogallala aquifers with the R<sup>2</sup> values consistently greater than 0.83. The Random Forest model gave a better prediction of TDS and SAR concentration with an average R, MAE, RMSE and MSE of 0.977, 0.015, 0.029 and 0.00, respectively. For the XGBoost, an average R, MAE, RMSE, and MSE of 0.953, 0.016, 0.037 and 0.00, respectively, were achieved. The overall performance of the models produced was impressive. From this study, we can clearly understand that Random Forest and XGBoost are appropriate for water quality prediction and monitoring in an area of high hydrocarbon activities like Midland and Odessa and West Texas at large.
基金supported by the National Nat-ural Science Foundation of China(No.52203376)the National Key Research and Development Program of China(No.2023YFB3813200).
文摘Traditional 3Ni weathering steel cannot completely meet the requirements for offshore engineering development,resulting in the design of novel 3Ni steel with the addition of microalloy elements such as Mn or Nb for strength enhancement becoming a trend.The stress-assisted corrosion behavior of a novel designed high-strength 3Ni steel was investigated in the current study using the corrosion big data method.The information on the corrosion process was recorded using the galvanic corrosion current monitoring method.The gradi-ent boosting decision tree(GBDT)machine learning method was used to mine the corrosion mechanism,and the importance of the struc-ture factor was investigated.Field exposure tests were conducted to verify the calculated results using the GBDT method.Results indic-ated that the GBDT method can be effectively used to study the influence of structural factors on the corrosion process of 3Ni steel.Dif-ferent mechanisms for the addition of Mn and Cu to the stress-assisted corrosion of 3Ni steel suggested that Mn and Cu have no obvious effect on the corrosion rate of non-stressed 3Ni steel during the early stage of corrosion.When the corrosion reached a stable state,the in-crease in Mn element content increased the corrosion rate of 3Ni steel,while Cu reduced this rate.In the presence of stress,the increase in Mn element content and Cu addition can inhibit the corrosion process.The corrosion law of outdoor-exposed 3Ni steel is consistent with the law based on corrosion big data technology,verifying the reliability of the big data evaluation method and data prediction model selection.
文摘BACKGROUND Development of distant metastasis(DM)is a major concern during treatment of nasopharyngeal carcinoma(NPC).However,studies have demonstrated im-proved distant control and survival in patients with advanced NPC with the addition of chemotherapy to concomitant chemoradiotherapy.Therefore,precise prediction of metastasis in patients with NPC is crucial.AIM To develop a predictive model for metastasis in NPC using detailed magnetic resonance imaging(MRI)reports.METHODS This retrospective study included 792 patients with non-distant metastatic NPC.A total of 469 imaging variables were obtained from detailed MRI reports.Data were stratified and randomly split into training(50%)and testing sets.Gradient boosting tree(GBT)models were built and used to select variables for predicting DM.A full model comprising all variables and a reduced model with the top-five variables were built.Model performance was assessed by area under the curve(AUC).RESULTS Among the 792 patients,94 developed DM during follow-up.The number of metastatic cervical nodes(30.9%),tumor invasion in the posterior half of the nasal cavity(9.7%),two sides of the pharyngeal recess(6.2%),tubal torus(3.3%),and single side of the parapharyngeal space(2.7%)were the top-five contributors for predicting DM,based on their relative importance in GBT models.The testing AUC of the full model was 0.75(95%confidence interval[CI]:0.69-0.82).The testing AUC of the reduced model was 0.75(95%CI:0.68-0.82).For the whole dataset,the full(AUC=0.76,95%CI:0.72-0.82)and reduced models(AUC=0.76,95%CI:0.71-0.81)outperformed the tumor node-staging system(AUC=0.67,95%CI:0.61-0.73).CONCLUSION The GBT model outperformed the tumor node-staging system in predicting metastasis in NPC.The number of metastatic cervical nodes was identified as the principal contributing variable.
文摘The Sentinel-2 satellites are providing an unparalleled wealth of high-resolution remotely sensed information with a short revisit cycle, which is ideal for mapping burned areas both accurately and timely. This paper proposes an automated methodology for mapping burn scars using pairs of Sentinel-2 imagery, exploiting the state-of-the-art eXtreme Gradient Boosting (XGB) machine learning framework. A large database of 64 reference wildfire perimeters in Greece from 2016 to 2019 is used to train the classifier. An empirical methodology for appropriately sampling the training patterns from this database is formulated, which guarantees the effectiveness of the approach and its computational efficiency. A difference (pre-fire minus post-fire) spectral index is used for this purpose, upon which we appropriately identify the clear and fuzzy value ranges. To reduce the data volume, a super-pixel segmentation of the images is also employed, implemented via the QuickShift algorithm. The cross-validation results showcase the effectiveness of the proposed algorithm, with the average commission and omission errors being 9% and 2%, respectively, and the average Matthews correlation coefficient (MCC) equal to 0.93.
基金support from the National Natural Science Foundation of China (Grant Nos. 41975068, 42150204, 42288101, 42075024, and 41830969)。
文摘From 17 November to 27 December 2022, extremely cold snowstorms frequently swept across North America and Eurasia. Diagnostic analysis reveals that these extreme cold events were closely related to the establishment of blocking circulations. Alaska Blocking(AB) and subsequent Ural Blocking(UB) episodes are linked to the phase transition of the North Atlantic Oscillation(NAO) and represent the main atmospheric regimes in the Northern Hemisphere. The downstream dispersion and propagation of Rossby wave packets from Alaska to East Asia provide a large-scale connection between AB and UB episodes. Based on the nonlinear multi-scale interaction(NMI) model, we found that the meridional potential vorticity gradient(PVy) in November and December of 2022 was anomalously weak in the mid-high latitudes from North America to Eurasia and provided a favorable background for the prolonged maintenance of UB and AB events and the generation of associated severe extreme snowstorms. However, the difference in the UB in terms of its persistence,location, and strength between November and December is related to the positive(negative) NAO in November(December). During the La Ni?a winter of 2022, the UB and AB events are related to the downward propagation of stratospheric anomalies, in addition to contributions by La Ni?a and low Arctic sea ice concentrations as they pertain to reducing PVyin mid-latitudes.
基金financial support from High-end Foreign Expert Introduction program(No.G20190022002)Chongqing Construction Science and Technology Plan Project(2019-0045)as well as Chongqing Engineering Research Center of Disaster Prevention&Control for Banks and Structures in Three Gorges Reservoir Area(Nos.SXAPGC18ZD01 and SXAPGC18YB03)。
文摘Accurate assessment of undrained shear strength(USS)for soft sensitive clays is a great concern in geotechnical engineering practice.This study applies novel data-driven extreme gradient boosting(XGBoost)and random forest(RF)ensemble learning methods for capturing the relationships between the USS and various basic soil parameters.Based on the soil data sets from TC304 database,a general approach is developed to predict the USS of soft clays using the two machine learning methods above,where five feature variables including the preconsolidation stress(PS),vertical effective stress(VES),liquid limit(LL),plastic limit(PL)and natural water content(W)are adopted.To reduce the dependence on the rule of thumb and inefficient brute-force search,the Bayesian optimization method is applied to determine the appropriate model hyper-parameters of both XGBoost and RF.The developed models are comprehensively compared with three comparison machine learning methods and two transformation models with respect to predictive accuracy and robustness under 5-fold cross-validation(CV).It is shown that XGBoost-based and RF-based methods outperform these approaches.Besides,the XGBoostbased model provides feature importance ranks,which makes it a promising tool in the prediction of geotechnical parameters and enhances the interpretability of model.
文摘Accurate prediction ofmonthly oil and gas production is essential for oil enterprises tomake reasonable production plans,avoid blind investment and realize sustainable development.Traditional oil well production trend prediction methods are based on years of oil field production experience and expertise,and the application conditions are very demanding.With the rapid development of artificial intelligence technology,big data analysis methods are gradually applied in various sub-fields of the oil and gas reservoir development.Based on the data-driven artificial intelligence algorithmGradient BoostingDecision Tree(GBDT),this paper predicts the initial single-layer production by considering geological data,fluid PVT data and well data.The results show that the GBDT algorithm prediction model has great accuracy,significantly improving efficiency and strong universal applicability.The GBDTmethod trained in this paper can predict production,which is helpful for well site optimization,perforation layer optimization and engineering parameter optimization and has guiding significance for oilfield development.
基金This study was jointly supported by the National Natural Science Foundation of China(Nos.51879196,51790533,51709143)Jiangxi Natural Science Foundation of China(No.20181BAB206045).
文摘It is important for regional water resources management to know the agricultural water consumption information several months in advance.Forecasting reference evapotranspiration(ET_(0))in the next few months is important for irrigation and reservoir management.Studies on forecasting of multiple-month ahead ET_(0) using machine learning models have not been reported yet.Besides,machine learning models such as the XGBoost model has multiple parameters that need to be tuned,and traditional methods can get stuck in a regional optimal solution and fail to obtain a global optimal solution.This study investigated the performance of the hybrid extreme gradient boosting(XGBoost)model coupled with the Grey Wolf Optimizer(GWO)algorithm for forecasting multi-step ahead ET_(0)(1-3 months ahead),compared with three conventional machine learning models,i.e.,standalone XGBoost,multi-layer perceptron(MLP)and M5 model tree(M5)models in the subtropical zone of China.The results showed that theGWO-XGB model generally performed better than the other three machine learning models in forecasting 1-3 months ahead ET_(0),followed by the XGB,M5 and MLP models with very small differences among the three models.The GWO-XGB model performed best in autumn,while the MLP model performed slightly better than the other three models in summer.It is thus suggested to apply the MLP model for ET_(0) forecasting in summer but use the GWO-XGB model in other seasons.
文摘In this paper,an advanced and optimized Light Gradient Boosting Machine(LGBM)technique is proposed to identify the intrusive activities in the Internet of Things(IoT)network.The followings are the major contributions:i)An optimized LGBM model has been developed for the identification of malicious IoT activities in the IoT network;ii)An efficient evolutionary optimization approach has been adopted for finding the optimal set of hyper-parameters of LGBM for the projected problem.Here,a Genetic Algorithm(GA)with k-way tournament selection and uniform crossover operation is used for efficient exploration of hyper-parameter search space;iii)Finally,the performance of the proposed model is evaluated using state-of-the-art ensemble learning and machine learning-based model to achieve overall generalized performance and efficiency.Simulation outcomes reveal that the proposed approach is superior to other considered methods and proves to be a robust approach to intrusion detection in an IoT environment.
文摘Addressing classification and prediction challenges, tree ensemble models have gained significant importance. Boosting ensemble techniques are commonly employed for forecasting Type-II diabetes mellitus. Light Gradient Boosting Machine (LightGBM) is a widely used algorithm known for its leaf growth strategy, loss reduction, and enhanced training precision. However, LightGBM is prone to overfitting. In contrast, CatBoost utilizes balanced base predictors known as decision tables, which mitigate overfitting risks and significantly improve testing time efficiency. CatBoost’s algorithm structure counteracts gradient boosting biases and incorporates an overfitting detector to stop training early. This study focuses on developing a hybrid model that combines LightGBM and CatBoost to minimize overfitting and improve accuracy by reducing variance. For the purpose of finding the best hyperparameters to use with the underlying learners, the Bayesian hyperparameter optimization method is used. By fine-tuning the regularization parameter values, the hybrid model effectively reduces variance (overfitting). Comparative evaluation against LightGBM, CatBoost, XGBoost, Decision Tree, Random Forest, AdaBoost, and GBM algorithms demonstrates that the hybrid model has the best F1-score (99.37%), recall (99.25%), and accuracy (99.37%). Consequently, the proposed framework holds promise for early diabetes prediction in the healthcare industry and exhibits potential applicability to other datasets sharing similarities with diabetes.
基金Project(2015CX005)supported by the Innovation Driven Plan of Central South University of ChinaProject supported by the Sheng Hua Lie Ying Program of Central South University,China
文摘The database of 254 rockburst events was examined for rockburst damage classification using stochastic gradient boosting (SGB) methods. Five potentially relevant indicators including the stress condition factor, the ground support system capacity, the excavation span, the geological structure and the peak particle velocity of rockburst sites were analyzed. The performance of the model was evaluated using a 10 folds cross-validation (CV) procedure with 80%of original data during modeling, and an external testing set (20%) was employed to validate the prediction performance of the SGB model. Two accuracy measures for multi-class problems were employed: classification accuracy rate and Cohen’s Kappa. The accuracy analysis together with Kappa for the rockburst damage dataset reveals that the SGB model for the prediction of rockburst damage is acceptable.
基金Key Program of Natural Science Foundation of Shandong Province(No.ZR2013FZ002)The Program of Science and Technology of Suzhou(No.ZXY2013030)Independent Innovation Foundation of Shandong University(No.11170074611102)
文摘The automatic seizure detection is significant for epilepsy diagnosis and it can alleviate the work intensity of inspecting prolonged electroencephalogram (EEG). This paper presents and investigates a novel machine learning approach utilizing gradient boosting to detect seizures from long-term EEG. We apply relative fluctuation index to extract features of long-term intracranial EEG data. A classifier trained with the gradient boosting algorithm is adopted to discriminate the seizure and non-seizure EEG signals. Smoothing and collar technique are finally used as post-processing in order to improve the detection accuracy further. The seizure detection method is assessed on Freiburg EEG datasets from 21 patients. The experimental results indicate that the proposed method yields an average sensitivity of 94. 60% with a false detection rate of 0. 18/h.
文摘Complex modulus(G^(*))is one of the important criteria for asphalt classification according to AASHTO M320-10,and is often used to predict the linear viscoelastic behavior of asphalt binders.In addition,phase angle(φ)characterizes the deformation resilience of asphalt and is used to assess the ratio between the viscous and elastic components.It is thus important to quickly and accurately estimate these two indicators.The purpose of this investigation is to construct an extreme gradient boosting(XGB)model to predict G^(*)andφof graphene oxide(GO)modified asphaltat medium and high temperatures.Two data sets are gathered from previously published experiments,consisting of 357 samples for G^(*)and 339 samples forφ,and the se are used to develop the XGB model using nine inputs representing theasphalt binder components.The findings show that XGB is an excellent predictor of G^(*)andφof GO-modified asphalt,evaluated by the coefficient of determination R^(2)(R^(2)=0.990 and 0.9903 for G^(*)andφ,respectively)and root mean square error(RMSE=31.499 and 1.08 for G^(*)andφ,respectively).In addition,the model’s performance is compared with experimental results and five other machine learning(ML)models to highlight its accuracy.In the final step,the Shapley additive explanations(SHAP)value analysis is conducted to assess the impact of each input and the correlation between pairs of important features on asphalt’s two physical properties.
基金This work was supported in part by the National Natural Science Foundation of China(61601418,41602362,61871259)in part by the Opening Foundation of Hunan Engineering and Research Center of Natural Resource Investigation and Monitoring(2020-5)+1 种基金in part by the Qilian Mountain National Park Research Center(Qinghai)(grant number:GKQ2019-01)in part by the Geomatics Technology and Application Key Laboratory of Qinghai Province,Grant No.QHDX-2019-01.
文摘This work was to generate landslide susceptibility maps for the Three Gorges Reservoir(TGR) area, China by using different machine learning models. Three advanced machine learning methods, namely, gradient boosting decision tree(GBDT), random forest(RF) and information value(InV) models, were used, and the performances were assessed and compared. In total, 202 landslides were mapped by using a series of field surveys, aerial photographs, and reviews of historical and bibliographical data. Nine causative factors were then considered in landslide susceptibility map generation by using the GBDT, RF and InV models. All of the maps of the causative factors were resampled to a resolution of 28.5 m. Of the 486289 pixels in the area,28526 pixels were landslide pixels, and 457763 pixels were non-landslide pixels. Finally, landslide susceptibility maps were generated by using the three machine learning models, and their performances were assessed through receiver operating characteristic(ROC) curves, the sensitivity, specificity,overall accuracy(OA), and kappa coefficient(KAPPA). The results showed that the GBDT, RF and In V models in overall produced reasonable accurate landslide susceptibility maps. Among these three methods, the GBDT method outperforms the other two machine learning methods, which can provide strong technical support for producing landslide susceptibility maps in TGR.
基金The National Natural Science Foundation of China(No.51478114,51778136)
文摘To investigate the travel time prediction method of the freeway, a model based on the gradient boosting decision tree (GBDT) is proposed. Eleven variables (namely, travel time in current period T i , traffic flow in current period Q i , speed in current period V i , density in current period K i , the number of vehicles in current period N i , occupancy in current period R i , traffic state parameter in current period X i , travel time in previous time period T i -1 , etc.) are selected to predict the travel time for 10 min ahead in the proposed model. Data obtained from VISSIM simulation is used to train and test the model. The results demonstrate that the prediction error of the GBDT model is smaller than those of the back propagation (BP) neural network model and the support vector machine (SVM) model. Travel time in current period T i is the most important variable among all variables in the GBDT model. The GBDT model can produce more accurate prediction results and mine the hidden nonlinear relationships deeply between variables and the predicted travel time.